Researching the modification and evaluating the effectiveness of treating the military poison yperit with Busofit activated carbon fabric
149 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.93.2024.83-90Keywords:
Activated carbon fabric; Chemical warfare agents Yperit; Surface decontamination.Abstract
Activated carbon fabric (ACF) Busofit is a commercial product widely used in Russia and Eastern European countries for adsorption and environmental treatment. In this paper the results of a study on the modification of ACF using thermal methods and evaluates its effectiveness in treating the toxic agent yperite are presented. The results show that after be modificated at 700 °C for 2 hours, Busofit ACF achieves a specific surface area of 970 m2/g and a yperite treatment efficiency of approximately 96.4% at a surface toxic density ranging from 2 g/m2 to 14 g/m2, a temperature of 30 °C, and a treatment time of 5 minutes. The research findings serve as a basis for further development of new materials for future applications in the production of chemical protective gear.
References
[1]. A. Derbyshire, M. Jagtoyen, and M. Thwaites, “Activated carbons - production and application”, in Porosity in carbons, J. W. Patrick Ed.: Edward Arnald, (1995).
[2]. J. Y. Chen, “1 - Introduction”, in Activated Carbon Fiber and Textiles. Oxford: Woodhead Publishing, pp. 3-20, (2017). DOI: https://doi.org/10.1016/B978-0-08-100660-3.00001-8
[3]. Hassan, Muhammad Faheem, et al, “Recent trends in activated carbon fibers production from various precursors and applications-A comparative review”, Journal of Analytical and Applied Pyrolysis, 145: 104715, (2020). DOI: https://doi.org/10.1016/j.jaap.2019.104715
[4]. Ramos, María E., Pablo R. Bonelli, and Ana L. Cukierman, “Physico-chemical and electrical properties of activated carbon cloths: effect of inherent nature of the fabric precursor”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324.1-3: 86-92, (2008). DOI: https://doi.org/10.1016/j.colsurfa.2008.03.034
[5]. Xu, Zhihua, et al, “Highly porous activated carbon synthesized by pyrolysis of polyester fabric wastes with different iron salts: pore development and adsorption behavior”, Colloids and surfaces A: physicochemical and engineering aspects, 565: 180-187, (2019). DOI: https://doi.org/10.1016/j.colsurfa.2019.01.007
[6]. Trường Sĩ Quan Phòng Hoá, Giáo trình Khí tài đề phòng, NXB QĐND, Hà Nội, (2017).
[7]. Sharma, P. K., et al, “Chemical protection studies of activated carbon spheres based permeable protective clothing against sulfur mustard, a chemical warfare agent”, Defence Science Journal, 69.6: 577-584, (2019). DOI: https://doi.org/10.14429/dsj.69.13958
[8]. Cosgrove, Stephanie, Bruce Jefferson, and Peter Jarvis, “Application of activated carbon fabric for the removal of a recalcitrant pesticide from agricultural run-off”, Science of the Total Environment, 815: 152626, (2022). DOI: https://doi.org/10.1016/j.scitotenv.2021.152626
[9]. Illingworth, James M., Brian Rand, and Paul T. Williams, “Non-woven fabric activated carbon produced from fibrous waste biomass for sulphur dioxide control”, Process Safety and Environmental Protection, 122: 209-220, (2019). DOI: https://doi.org/10.1016/j.psep.2018.12.010
[10]. Nieto-Delgado, Cesar, Dulce Partida-Gutierrez, and J. Rene Rangel-Mendez, “Preparation of activated carbon cloths from renewable natural fabrics and their performance during the adsorption of model organic and inorganic pollutants in water”, Journal of Cleaner Production, 213: 650-658, (2019). DOI: https://doi.org/10.1016/j.jclepro.2018.12.184
[11]. STANAG 4653/AEP-58, “Quy trình thử nghiệm và tiêu chí đánh giá đối với thiết bị khử nhiễm các tác nhân hóa học, sinh học, phóng xạ và hạt nhân”, EUROLAB Laboratory A.S. (2007).
[12]. STANAG 2352/ATP- 84, “Các khí tài phòng chống vũ khí hóa học, sinh học, phóng xạ, hạt nhân “, EUROLAB Laboratory A.S. (2007).
[13]. Tikhomirova K.V., Lopanov A.N. “Adsorption of dimethylpolysiloxane on graphite, anthracite, activated carbon from solutions in hexane. Sorption and chromatographic processes”. T. 20. No. 4. P. 485-492, (2020). DOI: https://doi.org/10.17308/sorpchrom.2020.20/2954
[14]. Säckl, Gary, et al, “Quantification of the carbon content of single grains in martensite-ferrite dual phase steel by UHV-EDXS”, Materials Characterization, 189: 111998, (2022). DOI: https://doi.org/10.1016/j.matchar.2022.111998
[15]. Rades, Steffi, et al, “High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles”, RSC advances, 4.91: 49577-49587, (2014). DOI: https://doi.org/10.1039/C4RA05092D
[16]. Chulliyil, Haleema Mohamed, et al. “Enhanced moisture adsorption of activated carbon through surface modification”, Results in Surfaces and Interfaces: 100170, (2023). DOI: https://doi.org/10.1016/j.rsurfi.2023.100170
[17]. Bùi Văn Tài, “Nghiên cứu một số yếu tố ảnh hưởng trong quá trình chế tạo than hoạt tính dạng vải sợi từ nguyên liệu sợi viscose”, Luận văn Tiến sỹ, Hà Nội, (2018).
[18]. Nguyễn Hùng Phong, Nguyễn Đình Hòa, “Điều chế vật liệu hấp thu khí acid trên cơ sở vải carbon hoạt tính”, Tuyển tập Báo cáo khoa học Hội nghị Xúc tác - Hấp phụ toàn quốc lần thứ III, tr. 131-136, (2005).
[19]. Quy trình phân tích định lượng chất độc quân sự, hóa chất độc công nghiệp và chất tiêu độc trên xe hóa nghiệm cải tiến AL-4M do Trung tâm Công nghệ xử lý Môi trường/ BCHH ban hành, (2005).