A type of public - key block cipher algorithm

223 views

Authors

  • Nong Phuong Trang Military Technical Academy
  • Luu Hong Dung (Corresponding Author) Military Technical Academy

DOI:

https://doi.org/10.54939/1859-1043.j.mst.CSCE7.2023.49-59

Keywords:

Symmetric Key Cryptography; Public Key Cryptography; Encryption - Authentication Algorithm; OTP Cipher; Block Cipher; Public – Key Block Cipher.

Abstract

The paper proposes a type of block cipher algorithm based on cryptographic hash function and public key cryptography. The algorithm proposed here is capable of verifying the origin and integrity of the encrypted message. On the other hand, establishing a shared secret key between the sender/encryptor and the receiver/decryptor can be done for each message separately.

References

. Lưu Hồng Dũng, Nguyễn Ánh Việt. "Một giải pháp xây dựng hệ mật khóa đối xứng". Tạp chí An toàn Thông tin, ISSN 1859 - 1256, Số 5 (057), (2020).

. Lưu Hồng Dũng, Nguyễn Ánh Việt, Đoàn Thị Bích Ngọc. "Thuật toán mã hóa - xác thực thông tin phát triển từ mật mã otp". Journal of Military Science and Technology, CSCE special issue, 87-93, (2020). DOI: https://doi.org/10.54939/1859-1043.j.mst...87-93

. Luu Hong Dung, Tong Minh Duc, Bui The Truyen. "A variant of otp cipher with symmetric key solution". Journal of Science and Technique - Section on Information and Communication Technology (ICT) - No. 16, (2020). DOI: 10.56651/lqdtu.jst.v9.n02.210.ict. DOI: https://doi.org/10.56651/lqdtu.jst.v9.n02.210.ict

. A. Menezes. "Elliptic Curve Public Key Cryptosystems". The Kluwer International Series in Engineering and Computer Science, 234. Kluwer Academic Publishers, Boston, (1993) DOI: https://doi.org/10.1007/978-1-4615-3198-2

. National Institute of Standards and Technology, NIST FIPS PUB 180-1. (1995)

. J. KATZ, Y. LINDELL. "Introduction to Modern Cryptography". Chapman & Hall/CRC (2008). DOI: https://doi.org/10.1201/9781420010756

. Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman. "An Introduction to Mathematical Cryptography". ISBN 978-0-387-77993-5. Springer - Verlag, (2008).

. L.C. WASHINGTON. "Elliptic Curves. Number Theory and Cryptography". Chapman & Hall/CRC, (2008).

. D.R. STINSON. "Cryptography. Theory and Practice". Chapman & Hall/CRC, (2006). DOI: https://doi.org/10.1201/9781420057133

. R.A. MOLLIN. "An Introduction to Cryptography". Chapman & Hall/CRC, (2006). DOI: https://doi.org/10.1201/9781420011241

. J. Talbot and D. Welsh. "Complexity and Cryptography: An Introduction". Cambridge University Press, (2006). DOI: https://doi.org/10.1017/CBO9780511755286

. J. H. Silverman. "Elliptic curves and cryptography". In Public-Key Cryptography, volume 62 of Proc. Sympos. Appl. Math, pages 91–112. Amer. Math. Soc., Providence, RI, (2005). DOI: https://doi.org/10.1090/psapm/062/2211873

. J. BUCHMANN. "Introduction to Cryptography". Springer–Verlag, (2004). DOI: https://doi.org/10.1007/978-1-4419-9003-7

. W. MAO. "Modern Cryptography. Theory and Practice". Pearson Education, (2004).

. I. SHPARLINSKI. "Cryptographic Applications of Analytic Number Theory". Complexity Lower Bounds and Pseurandomness. Birkhäuser, (2003). DOI: https://doi.org/10.1007/978-3-0348-8037-4

. S.S. WAGSTAFF. "Cryptanalysis of Number Theoretic Ciphers". Chapman & Hall/CRC, (2003).

. I. F. Blake, G. Seroussi, and N. P. Smart. "Elliptic Curves in Cryptography", volume 265 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, (2000).

. I. BLAKE, G.SEROUSSI & N. SMART. "Elliptic Curves in Cryptography". Cambridge University Press, (2000). DOI: https://doi.org/10.1017/CBO9781107360211

Downloads

Published

30-12-2023

How to Cite

[1]
Nong Phuong Trang and Luu Hong Dung, “A type of public - key block cipher algorithm”, JMST, no. CSCE7, pp. 50–60, Dec. 2023.

Issue

Section

Research Articles