A robust hybrid algorithm AI and GA for optimizing wind power in electricity market

Authors

  • Dinh Ngoc Sang Ho Chi Minh City University of Technology
  • Truong Viet Anh Ho Chi Minh City University of Technology
  • Nguyen Tung Linh (Corresponding Author) Electric Power University

DOI:

https://doi.org/10.54939/1859-1043.j.mst.99.2024.24-34

Keywords:

Thuật toán tối ưu; Trí thông minh nhân tạo; Long Short Term Memory; Thuật toán biến đổi gen; Trang trại điện gió; Thị trường điện.

Abstract

This paper proposes a robust hybrid method to optimize benefits under adverse conditions due to the uncertainty of wind power when integrated into competitive electricity markets. The hybrid algorithm synergizes an artificial intelligence technique to enhance the optimization efficiency of evolutionary algorithms. Results from the novel hybrid algorithm significantly enhance optimization speed and surpass local optima to achieve more favorable global optimum results. Experimental validation on the IEEE 30-bus power system, compared with previous studies and the original evolutionary algorithm, demonstrates notably higher profitability with the proposed algorithm. Based on experimental findings, the hybrid wind power-thermal power plant model also proves to mitigate compensation risks stemming from wind speed uncertainty, thereby stabilizing the electricity market and enhancing energy security. Encouraging optimal wind power capacity bidding on the electricity market in this context should entail a reduction of 15% to 18% compared to predictive expectations to attain optimal benefits.

References

[1]. IRENA, “FUTURE OF WIND Deployment, investment, technology, grid integration and socio-economic aspects” (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi, (2019).

[2]. D. Cao, W. Hu, X. Xu, T. Dragičević, Q. Huang, Z. Liu, Z. Chen e F. Blabjerg, “Bidding strategy for trading wind energy and purchasing reserve of wind power producer – A DRL based approach”, Electrical Power & Energy Systems, vol. 117, p. 105648, (2020).

[3]. K. Abaci e V. Yamacli, “Differential search algorithm for solving multi-objective optimal power flow problem”, International Journal of Electrical Power & Energy Systems, vol. 79, pp. 1-10, (2016).

[4]. T. B. Nkwanyana, M. W. Siti, Z. Wang, I. Toudjeu, N. T. Mbungu e W. Mulumb, “An assessment of hybrid-energy storage systems in the renewable environments”, Journal of Energy Storage, vol. 72, p. 108307, (2023).

[5]. Z. Sun, Z. Wang, Y. Tian, G. Wang, W. Wang, M. Yang, X. Wang, F. Zhang e Y. Pu, “Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics”, Advanced Electronic Materials Excellence in Electronics, vol. 6, n. 1, p. 1900698, (2020).

[6]. V. A. Truong, N. S. Dinh e T. L. Duong, “Profit Maximization of Wind Power Plants in the Electricity Market Based on Linking Models Between Energy Sources”, Arabian Journal for Science and Engineering, vol. 48, n. 8, (2023).

[7]. R. Fallahifar e M. Kalantar, “Optimal planning of lithium ion battery energy storage for microgrid applications: Considering capacity degradation”, Journal of Energy Storage, vol. 57, p. 106103, (2023).

[8]. M. Kaveh e M. S. Mesgari, “Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review”, Neural Processing Letters, vol. 55, p. 4519–4622, (2022).

[9]. K. Rajwar, K. Deep e S. Das, “An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges”, Artificial Intelligence Review, vol. 56, p. 13187–13257, (2023).

[10]. M. A. Elaziz, A. Dahou, L. Abualigah, L. Yu, M. Alshinwan, A. M. Khasawneh e S. Lu, “Advanced metaheuristic optimization techniques in applications of deep neural networks: a review”, Neural Computing and Applications, vol. 33, p. 14079–14099, (2021).

[11]. B. A. S. Emambocus, M. B. Jasser e A. Amphawan, “A Survey on the Optimization of Artificial Neural Networks Using Swarm Intelligence Algorithms”, IEEE Access, vol. 11, pp. 1280 - 1294, (2023).

[12]. Bharti, P. Redhu e K. Kumar, “Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM”, Physica A: Statistical Mechanics and its Applications, vol. 625, p. 129001, (2023).

[13]. S. N. Dinh, A. V. Truong e L. T. Nguyen, “Enhancing Wind Energy Investment Efficiency in The Electricity Market through The Integration of Power Uncertainty with Thermal Power Plant Operation”, Tạp chí Khoa học va Công nghệ - Đại học Đà Nẵng, vol. 22, n. 2, pp. 81-87, (2024).

[14]. X. Lu, K. Li, H. Xu, F. Wang, Z. Zhou e Y. Zhang, “Fundamentals and business model for resource aggregator of demand response in electricity markets”, Energy, vol. 204, (2020).

[15]. S. N. Dinh, L. T. Nguyen e A. V. Truong, “Enhancing Wind Power Profitability Through Integrated Clusters in the Electricity Market”, in Conference: 2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM), Hanoi, Vietnam, (2023).

[16]. M. A. Elaziz, A. Dahou, L. Abualigah, L. Yu, M. Alshinwan, A. M. Khasawneh e S. Lu, “Advanced metaheuristic optimization techniques in applications of deep neural networks: a review”, Neural Computing and Applications, vol. 33, p. 14079–14099, (2021).

[17]. P. P. Biswas, P. N. Suganthan e G. A. J. Amaratunga, “Optimal power flow solutions incorporating stochastic wind and solar power”, Energy Conversion and Management, vol. 148, pp. 1194-1207, (2017).

[18]. “Energy Prices and Costs in Europe: Report from the commission to the european parliament, the council”, the european economic and social committee and the committee of the regions, European Commssion, Brussels, (2020).

[19]. M. Cao, Q. Xu, X. Qin e J. Cai, “Battery energy storage sizing based on a model predictive control strategy with operational constraints to smooth the wind power”, International Journal of Electrical Power & Energy Systems, vol. 115, pp. 1-10, (2020).

[20]. P. Wais, “A review of Weibull functions in wind sector”, Renewable and Sustainable Energy Reviews, vol. 70, pp. 1099-1107, (2017).

[21]. Z. Wang, W. Wang, C. Liu, Z. Wang e Y. Hou, “Probabilistic Forecast for Multiple Wind Farms Based on Regular Vine Copulas”, IEEE Transactions on Power Systems, vol. 33, n. 1, pp. 578 - 589, (2018).

[22]. A. Abedi, M. R. Hesamzadeh e F. Romerio, “Adaptive robust vulnerability analysis of power systems under uncertainty: A multilevel OPF-based optimization approach”, International Journal of Electrical Power & Energy Systems, vol. 134, p. 107432, (2022).

[23]. G. Bertrand e A. Papavasiliou, “An Analysis of Threshold Policies for Trading in Continuous Intraday Electricity Markets”, 15th International Conference on the European Energy Market (EEM), p. 18130454, (2018).

[24]. S. Mirjalili, Genetic Algorithm, “Evolutionary Algorithms and Neural Networks”. Studies in Computational Intelligence, vol. 780, p. 43–55, (2019).

[25]. S. Hochreiter e J. Schmidhuber, “Long Short-Term Memory”, Neural Computation, vol. 9, n. 8, pp. 1735 - 1780, (1997).

[26]. F. Shahid, A. Zameer e M. Muneeb, “A novel genetic LSTM model for wind power forecast”, Energy, vol. 223, p. 120069, (2021).

[27]. O. Alsac e B. Stott, “Optimal Load Flow with Steady-State Security”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, n. 3, pp. 745-751, (1974).

[28]. MATPOWER Test Cases, (2018). [Online]. Available: https://matpower.org/docs/ref/matpower5.0/case_ieee30.html.

Downloads

Published

25-11-2024

How to Cite

Dinh Ngoc Sang, Truong Viet Anh, and N. Tung Linh. “A Robust Hybrid Algorithm AI and GA for Optimizing Wind Power in Electricity Market”. Journal of Military Science and Technology, vol. 99, no. 99, Nov. 2024, pp. 24-34, doi:10.54939/1859-1043.j.mst.99.2024.24-34.

Issue

Section

Electronics & Automation

Categories