Control of liquid sloshing container in horizontal motion by generating a trajectory based on the flatness theory
49 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.FEE.2024.92-98Keywords:
Sloshing; Flat output; Motion control.Abstract
The oscillation of liquid inside a moving container is a complex nonlinear dynamic phenomenon that can induce instability in the fluid-containing system. This paper proposes a stabilization method for liquid surface oscillations at the initial and final points of the trajectory, utilizing flatness to establish the trajectory and constructing a tracking controller. The effectiveness of the proposed method is verified through simulation results.
References
[1]. BAUER, H.F, “Nonlinear mechanical model for the description of propellant sloshing”, AIAA Journal, 4(9), pp.1662–1668, (1966). DOI: https://doi.org/10.2514/3.3752
[2]. Ibrahim, R.A., “Liquid Sloshing Dynamics: Theory and Applications”, Cambridge University Press, (2005). DOI: https://doi.org/10.1017/CBO9780511536656
[3]. Guagliumi, L., Berti, A., Monti, E., Carricato, M., “A simple model-based method for sloshing estimation in liquid transfer in automatic machines”, IEEE Access 9, pp.129347–129357, (2021). DOI: https://doi.org/10.1109/ACCESS.2021.3113956
[4]. Di Leva, R., Carricato, M., Gattringer, H., Müller, A., “Sloshing dynamics estimation for liquid-filled containers under 2-dimensional excitation”, In: Proceedings of the 10th ECCOMAS Thematic Conference on Multibody Dynamics, pp. 80–89, (2021). DOI: https://doi.org/10.3311/ECCOMASMBD2021-274
[5]. Guagliumi, L., Berti, A., Monti, E., Carricato, M., “Antisloshing trajectories for high-acceleration motions in automatic machines”, Journal of Dynamic Systems, Measurement, and Control, pp.144(7), (2022). DOI: https://doi.org/10.1115/1.4054224
[6]. M. Grundelius, “Methods for Control of Liquid Slosh”, Doctoral dissertation, Lund Institute of Technology, (2001).
[7]. Leva, R.D., Carricato, M., Gattringer, H., Muller, A., “Time-optimal trajectory planning for anti-sloshing 2-dimensional motions of an industrial robot”, In: 2021 20th International Conference on Advanced Robotics (ICAR), IEEE, (2021). DOI: https://doi.org/10.1109/ICAR53236.2021.9659383
[8]. Fliess, M., Levine, J., Martin, P., Rouchon, P., “Flatness and defect of ´non-linear systems: introductory theory and examples”, International Journal of Control, 61(6), pp.1327–1361, (1995). DOI: https://doi.org/10.1080/00207179508921959
[9]. Fliess, M., Levine, J., Martin, P., Rouchon, P., “A lie-backlund apoach to equivalence and flatness of nonlinear systems”, IEEE Transactions on Automatic Control, 44(5), pp.922–937, (1999). DOI: https://doi.org/10.1109/9.763209
[10]. Levine, J., “Analysis and Control of Nonlinear Systems”, Springer, (2009). DOI: https://doi.org/10.1007/978-3-642-00839-9
[11]. Fliess, M., Marquez, R., “Continuous-time linear predictive control and flatness: A module-theoretic setting with examples”, International Journal of Control, 73(7), pp.606–623, (2000). DOI: https://doi.org/10.1080/002071700219452
[12]. J. Levine and D. V. Nguyen, “Flat output characterization for linear systems using polynomial matrices”, Systems and Control Letters, 48: pp.69–75, (2003). DOI: https://doi.org/10.1016/S0167-6911(02)00257-8
[13]. Q. Zang and J. Huang, “Dynamics and control of three-dimensional slosh in a moving rectangular liquid container undergoing planar ex-citations,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2309–2318, (2015). DOI: https://doi.org/10.1109/TIE.2014.2361799