Photocatalytic activities of TiO2 nanoparticles modified by nanoclusters of copper oxides prepared by atomic layer deposition
268 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.83.2022.30-39Keywords:
Atomic layer deposition; Surface modification; TiO2/Cu2O; TiO2/CuO; Photocatalysis.Abstract
We employed atomic layer deposition to deposit nanoclusters of Cu2O on TiO2 nanoparticles to produce TiO2/Cu2O photocatalysts with the Cu concentration in the range of 0.4 - 4.6%. By annealing the TiO2/Cu2O photocatalysts in the air at 400 °C for 4 h, the oxidation of Cu2O resulted in the formation of TiO2/CuO photocatalysts having the same Cu concentration. Transmission electron microscopy and X-ray diffraction characterizations demonstrated the successful deposition of Cu2O nanoclusters with an average diameter in the range of 1.3 - 2.0 nm and a face-centered cubic crystalline structure, whereas a weak signal of the monoclinic structure of CuO was detected for the TiO2/Cu2O catalysts. The photocatalytic activity of the TiO2/Cu2O and the TiO2/CuO photocatalysts was investigated by the degradation of RhB under UV radiation. The results show that the presence of Cu2O and CuO nanoclusters could improve the photocatalytic activity of TiO2, and for the same Cu concentration, the TiO2/Cu2O photocatalyst provided higher catalytic activity than the TiO2/CuO counterpart.
References
[1]. Chen, X.; Mao, S. S. "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications". Chem. Rev., 107 (7), 2891–2959, (2007). https://doi.org/10.1021/cr0500535. DOI: https://doi.org/10.1021/cr0500535
[2]. Park, H.; Park, Y.; Kim, W.; Choi, W. "Surface Modification of TiO2 Photocatalyst for Environmental Applications". Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1–20, (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001. DOI: https://doi.org/10.1016/j.jphotochemrev.2012.10.001
[3]. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. "Understanding TiO2 Photocatalysis: Mechanisms and Materials". Chem. Rev., 114 (19), 9919–9986, (2014). https://doi.org/10.1021/cr5001892. DOI: https://doi.org/10.1021/cr5001892
[4]. Moniz, S. J. A.; Tang, J. "Charge Transfer and Photocatalytic Activity in CuO/TiO2 Nanoparticle Heterojunctions Synthesised through a Rapid, One-Pot, Microwave Solvothermal Route". ChemCatChem, 7 (11), 1659–1667, (2015). https://doi.org/10.1002/cctc.201500315. DOI: https://doi.org/10.1002/cctc.201500315
[5]. Basnet, P.; Anderson, E.; Zhao, Y. "Hybrid CuxO–TiO2 Nanopowders Prepared by Ball Milling for Solar Energy Conversion and Visible-Light-Induced Wastewater Treatment". ACS Appl. Nano Mater., 2 (4), 2446–2455, (2019). https://doi.org/10.1021/acsanm.9b00325. DOI: https://doi.org/10.1021/acsanm.9b00325
[6]. Zhang, S.; Gong, X.; Shi, Q.; Ping, G.; Xu, H.; Waleed, A.; Li, G. "CuO Nanoparticle-Decorated TiO2-Nanotube Heterojunctions for Direct Synthesis of Methyl Formate via Photo-Oxidation of Methanol". ACS Omega, 5 (26), 15942–15948, (2020). https://doi.org/10.1021/acsomega.0c01169. DOI: https://doi.org/10.1021/acsomega.0c01169
[7]. Wei, T.; Zhu, Y.-N.; An, X.; Liu, L.-M.; Cao, X.; Liu, H.; Qu, J. "Defect Modulation of Z-Scheme TiO2/Cu2O Photocatalysts for Durable Water Splitting". ACS Catal., 9 (9), 8346–8354, (2019). https://doi.org/10.1021/acscatal.9b01786. DOI: https://doi.org/10.1021/acscatal.9b01786
[8]. Han, C.; Li, Z.; Shen, J. "Photocatalytic Degradation of Dodecyl-Benzenesulfonate over TiO2–Cu2O under Visible Irradiation". Journal of Hazardous Materials, 168 (1), 215–219, (2009). https://doi.org/10.1016/j.jhazmat.2009.02.020. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.020
[9]. Puurunen, R. L. "Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process". Journal of Applied Physics, 97 (12), 121301, (2005). https://doi.org/10.1063/1.1940727. DOI: https://doi.org/10.1063/1.1940727
[10]. George, S. M. "Atomic Layer Deposition: An Overview". Chem. Rev., 110 (1), 111–131, (2010). https://doi.org/10.1021/cr900056b. DOI: https://doi.org/10.1021/cr900056b
[11]. O’Neill, B. J.; Jackson, D. H. K.; Lee, J.; Canlas, C.; Stair, P. C.; Marshall, C. L.; Elam, J. W.; Kuech, T. F.; Dumesic, J. A.; Huber, G. W. "Catalyst Design with Atomic Layer Deposition". ACS Catal., 5 (3), 1804–1825, (2015). https://doi.org/10.1021/cs501862h. DOI: https://doi.org/10.1021/cs501862h
[12]. Lu, J.; Elam, J. W.; Stair, P. C. "Atomic Layer Deposition—Sequential Self-Limiting Surface Reactions for Advanced Catalyst “Bottom-up” Synthesis". Surface Science Reports, 71 (2), 410–472, (2016). https://doi.org/10.1016/j.surfrep.2016.03.003. DOI: https://doi.org/10.1016/j.surfrep.2016.03.003
[13]. Bui, H. V.; Grillo, F.; Ommen, J. R. van. "Atomic and Molecular Layer Deposition: Off the Beaten Track". Chemical Communications, 53 (1), 45–71, (2017). https://doi.org/10.1039/C6CC05568K. DOI: https://doi.org/10.1039/C6CC05568K
[14]. Xu, Y.; Zheng, W.; Liu, X.; Zhang, L.; Zheng, L.; Yang, C.; Pinna, N.; Zhang, J. "Platinum Single Atoms on Tin Oxide Ultrathin Films for Extremely Sensitive Gas Detection". Mater. Horiz., 7 (6), 1519–1527, (2020). https://doi.org/10.1039/D0MH00495B. DOI: https://doi.org/10.1039/D0MH00495B
[15]. Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R.; Ye, S.; Knights, S.; Botton, G. A.; Sham, T.-K.; Sun, X. "Single-Atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition". Sci Rep, 3 (1), 1775, (2013). https://doi.org/10.1038/srep01775. DOI: https://doi.org/10.1038/srep01775
[16]. Benz, D.; Nguyen, Y.-N. T.; Le, T.-L. T.; Le, T.-H. T.; Le, V.-T.; Ommen, J. R. van; Bui, H. V. "Controlled Growth of Ultrasmall Cu2O Clusters on TiO2 Nanoparticles by Atmospheric-Pressure Atomic Layer Deposition for Enhanced Photocatalytic Activity". Nanotechnology, 32 (42), 425601, (2021). https://doi.org/10.1088/1361-6528/ac10e2. DOI: https://doi.org/10.1088/1361-6528/ac10e2
[17]. Beetstra, R.; Lafont, U.; Nijenhuis, J.; Kelder, E. M.; van Ommen, J. R. "Atmospheric Pressure Process for Coating Particles Using Atomic Layer Deposition". Chemical Vapor Deposition, 15 (7–9), 227–233, (2009). https://doi.org/10.1002/cvde.200906775. DOI: https://doi.org/10.1002/cvde.200906775
[18]. Yang, Y.; Xu, D.; Wu, Q.; Diao, P. "Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction". Sci Rep, 6 (1), 35158, (2016). https://doi.org/10.1038/srep35158. DOI: https://doi.org/10.1038/srep35158
[19]. Wang, S.; Teng, F.; Zhao, Y. "Effect of the Molecular Structure and Surface Charge of a Bismuth Catalyst on the Adsorption and Photocatalytic Degradation of Dye Mixtures". RSC Adv., 5 (93), 76588–76598, (2015). https://doi.org/10.1039/C5RA14931B. DOI: https://doi.org/10.1039/C5RA14931B
[20]. Cheng, W.-Y.; Yu, T.-H.; Chao, K.-J.; Lu, S.-Y. "Cu2O-Decorated Mesoporous TiO2 Beads as a Highly Efficient Photocatalyst for Hydrogen Production". ChemCatChem, 6 (1), 293–300, (2014). https://doi.org/10.1002/cctc.201300681. DOI: https://doi.org/10.1002/cctc.201300681
[21]. Xu, Y.; Liang, D.; Liu, M.; Liu, D. "Preparation and Characterization of Cu2O–TiO2: Efficient Photocatalytic Degradation of Methylene Blue". Materials Research Bulletin, 43 (12), 3474–3482, (2008). https://doi.org/10.1016/j.materresbull.2008.01.026. DOI: https://doi.org/10.1016/j.materresbull.2008.01.026
[22]. Zhou, P.; Yu, J.; Jaroniec, M. "All-Solid-State Z-Scheme Photocatalytic Systems". Advanced Materials, 26 (29), 4920–4935, (2014). https://doi.org/10.1002/adma.201400288. DOI: https://doi.org/10.1002/adma.201400288
[23]. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A. "Cu2O/TiO2 Heterostructures for CO2 Reduction through a Direct Z-Scheme: Protecting Cu2O from Photocorrosion". Applied Catalysis B: Environmental, 217, 485–493, (2017). https://doi.org/10.1016/j.apcatb.2017.05.058. DOI: https://doi.org/10.1016/j.apcatb.2017.05.058