Mechanically tunable dual-band metamaterial absorber at ultra-high frequency

286 views

Authors

  • Duong Thi Ha Graduate University of Science and Technology, Vietnam Academy of Science and Technology
  • Vankham BOUDTHALY Thai Nguyen University of Education
  • Soulima KHAMSADETH Thai Nguyen University of Education
  • Vu Thi Hong Hanh Thai Nguyen University of Education
  • Bui Son Tung Institute of Materials Science, Vietnam Academy of Science and Technology
  • Bui Xuan Khuyen (Corresponding Author) Institute of Materials Science, Vietnam Academy of Science and Technology
  • Vu Dinh Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.84.2022.93-100

Keywords:

Điều khiển cơ học; Hấp thụ dải kép; Vật liệu biến hóa hấp thụ sóng điện từ; Vùng tần số UHF.

Abstract

We numerically demonstrated a dual-band metamaterial absorber (MPA) operating in low frequency range based on a flexible polyimide substrate. For the flat configuration, two absorption peaks are obtained at 450 MHz and 1.47 GHz with absorption over 90%. The ratios of the periodicity of unit cells and thickness to the longest absorption wavelength are 1/12 and 1/114, respectively. Especially, our MPA is insensitive with polarization and stable with the oblique incidence angle of incoming electromagnetic waves. The proposed MPA maintains an absorption over 90% when incident angle is increased up to 60o. Furthermore, since structure is wrapped and attached to cylindered surfaces (the varying radii from 200 to 500 mm), new absorption peaks can be obtained at higher frequency range. For both flat and curvature states, the absorption mechanism is explained by the magnetic resonance and the perfect impedance matching phenomena.

References

[1]. D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett., 84, 4184, (2000). DOI: https://doi.org/10.1103/PhysRevLett.84.4184

[2]. Y. J. Yoo, C. Yi, J. S. Hwang, Y. J. Kim, S. Y. Park, K. W. Kim, J. Y. Rhee, Y. Lee, “Experimental realization of tunable metamaterial hyper-transmitter”, Sci. Rep., 6(1), pp. 1 - 8, (2016). DOI: https://doi.org/10.1038/srep33416

[3]. Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, Y. Gong, “Observation of the reversed Cherenkov radiation”, Nat. Commun., 8, 14901, (2017). DOI: https://doi.org/10.1038/ncomms14901

[4]. N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect”, Science, 302, 1537, (2003). DOI: https://doi.org/10.1126/science.1089342

[5]. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber”, Phys. Rev. Lett., 100, 207402, (2008). DOI: https://doi.org/10.1103/PhysRevLett.100.207402

[6]. M. Bakır, M. Karaaslan, E. Unal, O. Akgol, C. Sabah, “Microwave metamaterial absorber for sensing applications”, Opto-Electron. Rev., 25(4), pp. 318 - 325, (2017) DOI: https://doi.org/10.1016/j.opelre.2017.10.002

[7]. A. Mohanty, O. P. Acharya, B. Appasani, S. K. Mohapatra, M. S. Khan, “Design of a novel terahertz metamaterial absorber for sensing applications”, IEEE Sen. J., 21(20), pp. 22688 - 22694, (2021). DOI: https://doi.org/10.1109/JSEN.2021.3109158

[8]. G. E. Persis, J. J. Paul, T. B. Mary, R. C. Joy, “A compact tilted split ring multiband metamaterial absorber for energy harvesting applications”, Mater. Today: Proc., 56, pp. 368 - 372, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.01.206

[9]. A. Elsharabasy, M. Bakr, M. J. Deen, “Wide-angle, wide-band, polarization-insensitive metamaterial absorber for thermal energy harvesting”, Sci. Rep., 10(1), pp. 1 - 10, (2020.) DOI: https://doi.org/10.1038/s41598-020-73368-7

[10]. D. Hu, T. Meng, H. Wang, Y. Ma, Q. Zhu, “Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application”, Results Phys., 19, p.103567, (2020). DOI: https://doi.org/10.1016/j.rinp.2020.103567

[11]. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures”, Sci. Rep., 6(1), pp. 1 - 8, (2016). DOI: https://doi.org/10.1038/srep32466

[12]. M. Li, Z. Yi, Y. Luo, B. Muneer, Q. Zhu, “A novel integrated switchable absorber and radiator”, IEEE Trans. Antennas Propag., 64, no. 3, pp. 944 - 952, (2016). DOI: https://doi.org/10.1109/TAP.2016.2515121

[13]. M. C. Tran, V. H. Pham, T. H. Ho, T. T. Nguyen, H. T. Do, X. K. Bui, S. T. Bui, D. T. Le, T. L. Pham, D. L. Vu, “Broadband microwave coding metamaterial absorbers”, Sci. Rep., 10(1), pp. 1 - 11 (2020). DOI: https://doi.org/10.1038/s41598-020-58774-1

[14]. Z. Zhang, L. Zhang, X. Chen, Z. Wu, Y. He, Y. Lv, Y. Zou, “Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band”, J. Magn. Magn. Mater., 497, p. 166075, (2020). DOI: https://doi.org/10.1016/j.jmmm.2019.166075

[15]. M. R. Soheilifar, “Design, fabrication, and characterization of scaled and stacked layers metamaterial absorber in microwave region”, Microw. Opt. Technol. Lett., 58(5), pp. 1187 - 1193, (2016). DOI: https://doi.org/10.1002/mop.29762

[16]. P. Yu, L. V. Besteiro, J. Wu, Y. Huang, Y. Wang, A. O. Govorov, Z. Wang, “Metamaterial perfect absorber with unabated size-independent absorption”, Opt. Express, 26(16), pp. 20471 - 20480, (2018). DOI: https://doi.org/10.1364/OE.26.020471

[17]. A. Musa, M. L. Hakim, T. Alam, M. T. Islam, A. S. Alshammari, K. Mat, S. H. Almalki, M. S. Islam, “Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications”, Materials, 15(10), p. 3733, (2022). DOI: https://doi.org/10.3390/ma15103733

[18]. S. Yagitani, K. Katsuda, M. Nojima, Y. Yoshimura, H. Sugiura, “Imaging radio-frequency power distributions by an EBG absorber”, IEICE Trans. Commun. E, 94-B, 2306, (2011). DOI: https://doi.org/10.1587/transcom.E94.B.2306

[19]. F. Costa, S. Genovesi, A. Monorchio, “A chipless RFID based on multiresonant high-impedance surfaces”, IEEE Trans. Microwave Theory Tech., 61, 146, (2013). DOI: https://doi.org/10.1109/TMTT.2012.2227777

[20]. F. Costa, S. Genovesi, A. Monorchio, G. Manara, “On the bandwidth of high-impedance frequency selective surfaces”, IEEE Antennas Wireless Propag. Lett., 8, 1341, (2009). DOI: https://doi.org/10.1109/LAWP.2009.2038346

[21]. B.X. Khuyen, B.S. Tung, Y.J. Yoo, Y.J. Kim, K.W. Kim, L.-Y. Chen, V.D. Lam, Y.P. Lee, “Miniaturization for ultrathin metamaterial perfect absorber in the VHF band”, Sci. Rep., 7, 45151, (2017). DOI: https://doi.org/10.1038/srep45151

[22]. S. J. Li, P. X. Wu, H. X. Xu, Y. L. Zhou, X. Y. Cao, J. F. Han, C. Zhang, H. H. Yang, Z. Zhang, “Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects”, Nano Res. Lett., 13(1), 386, (2018). DOI: https://doi.org/10.1186/s11671-018-2810-0

[23]. Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small size unit cell”, Appl. Phys. Lett., 105, 041902, (2014).

[24]. S. Fan, Y. Song, “UHF metamaterial absorber with small-size unit cell by combining fractal and coupling lines”, Int. J. Antennas Propag., (2018). DOI: https://doi.org/10.1155/2018/9409152

[25]. B. X. Khuyen, B. S. Tung, Y. J. Kim, J. S. Hwang, K. W. Kim, J. Y. Rhee, V. D. Lam, Y. H. Kim, Y. Lee, “Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency”, Sci. Rep., 8(1), 11632, (2018). DOI: https://doi.org/10.1038/s41598-018-29896-4

[26]. D. T. Ha, B. S. Tung, B. X. Khuyen, T. S. Pham, N. T. Tung, N. H. Tung, N. T. Hoa, V. D. Lam, H. Zheng, L. Chen, Y. Lee, “Dual-Band, Polarization-Insensitive, Ultrathin and Flexible Metamaterial Absorber Based on High-Order Magnetic Resonance”, Photonics, 8(21), p. 574, (2021). DOI: https://doi.org/10.3390/photonics8120574

[27]. CST Microwave Studio 2015, License ID: 52856-1. Dassault Systèmes. Available online: http://www.cst.com (accessed on 15 June 2021).

[28]. B. X. Khuyen, B. S. Tung, N. V. Dung, Y. J. Yoo, Y. J. Kim, K. W. Kim, V. D. Lam, J. G. Yang, Y. Lee, “Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization”, J. Appl. Phys., 117(24), p. 243105, (2015). DOI: https://doi.org/10.1063/1.4923053

[29]. Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, Y. P Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell”, Appl. Phys. Lett., 105 (4), 041902, (2014). DOI: https://doi.org/10.1063/1.4885095

[30]. B. Lin, S. Zhao, X. Da, Y. Fang, J. Ma, W. Li, Z. Zhu, “Triple-band low frequency ultracompact metamaterial absorber”, J. Appl. Phys., 117(18), 184503, (2015). DOI: https://doi.org/10.1063/1.4920994

[31]. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco Jr, J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials”, Phys. Rev. E, 70, 016608 (2004). DOI: https://doi.org/10.1103/PhysRevE.70.016608

[32]. J. Zhou, E. N. Economon, T. Koschny, C. M. Soukoulis, “Unifying approach to left-handed material design”, Opt. Lett., 31, 3620 - 3622, (2006). DOI: https://doi.org/10.1364/OL.31.003620

[33]. S. Jung, Y. J. Kim, Y. J. Yoo, J. S. Hwang, B. X. Khuyen, L. Y. Chen, Y. Lee, “High-order resonance in a multiband metamaterial absorber”, J. Electron. Mater., 49(3), pp.1677 - 1688, (2020). DOI: https://doi.org/10.1007/s11664-019-07661-1

[34]. M. L. Hakim, T. Alam, A. F. Almutairi, M. F. Mansor, M. T. Islam, “Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications”, Sci. Rep., 11(1), pp. 1 - 14, (2021). DOI: https://doi.org/10.1038/s41598-021-97395-0

[35]. J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, Y. P. Lee, “Switching and extension of transmission response, based on bending metamaterials”, Sci. Rep., 7, pp. 3559, (2017). DOI: https://doi.org/10.1038/s41598-017-03824-4

[36]. V. Aksyuk, B. Lahiri, G. Holland, A. Centrone, “Near-field asymmetries in plasmonic resonators”, Nanoscale, 7, pp. 3634 - 3644 (2015). DOI: https://doi.org/10.1039/C4NR06755J

Downloads

Published

28-12-2022

How to Cite

[1]
D. T. . Ha, “Mechanically tunable dual-band metamaterial absorber at ultra-high frequency”, JMST, no. 84, pp. 93–100, Dec. 2022.

Issue

Section

Research Articles