Polyp segmentation on colonoscopy image using improved Unet and transfer learning
331 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.CSCE6.2022.41-55Keywords:
Artificial Intelligence; Colonoscopy; Polyp Segmentation; Transfer Learning; Unet.Abstract
Colorectal cancer is among the most common malignancies and can develop from high-risk colon polyps. Colonoscopy remains the gold-standard investigation for colorectal cancer screening. The procedure could benefit greatly from using AI models for automatic polyp segmentation, which provide valuable insights for improving colon polyp dection. Additionally, it will support gastroenterologists during image analysation to correctly choose the treatment with less time. In this paper, the framework of polyp image segmentation is developed by a deep learning approach, especially a convolutional neural network. The proposed framework is based on improved Unet architecture to obtain the segmented polyp image. We also propose to use the transfer learning method to transfer the knowledge learned from the ImageNet general image dataset to the endoscopic image field. This framework used the Kvasir-SEG database, which contains 1000 GI polyp images and corresponding segmentation masks according to annotation by medical experts. The results confirmed that our proposed method outperform the state-of-the-art polyp segmentation methods with 94.79% dice, 90.08% IOU, 98.68% recall, and 92.07% precision.
References
[1]. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA, A Cancer J. Clinicians, vol. 71, no. 3, pp. 209-249, May (2021). DOI: https://doi.org/10.3322/caac.21660
[2]. J.-F. Rey and R. Lambert, “ESGE recommendations for quality control in gastrointestinal endoscopy: Guidelines for image documentation in upper and lower GI endoscopy”, Endoscopy, vol. 33, no. 10, pp. 901-903, Sep. (2001). DOI: https://doi.org/10.1055/s-2001-42537
[3]. A. M. Leufkens, M. G. H. van Oijen, F. P. Vleggaar, and P. D. Siersema. "Factors influencing the miss rate of polyps in a back-to-back colonoscopy study," Endoscopy, 44(05):470475, (2012). DOI: https://doi.org/10.1055/s-0031-1291666
[4]. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, pp. 234-241, (2015). DOI: https://doi.org/10.1007/978-3-319-24574-4_28
[5]. Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE." CVF Conference on Computer Vision and Pattern Recognition, (2018). DOI: https://doi.org/10.1109/CVPR.2018.00474
[6]. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. (2016). DOI: https://doi.org/10.1109/CVPR.2016.90
[7]. Tan, Mingxing, and Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." arXiv preprint arXiv:1905.11946 (2019).
[8]. D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, “Kvasir-SEG: A segmented polyp dataset,'' in Proc. Int. Conf. Multimedia Modeling. Springer, pp. 451-462, (2020). DOI: https://doi.org/10.1007/978-3-030-37734-2_37
[9]. J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer,” Int. J. Comput. Assist. Radiol. Surg., vol. 9, no. 2, pp. 283-293, (2014). DOI: https://doi.org/10.1007/s11548-013-0926-3
[10]. J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognit., vol. 45, no. 9, pp. 3166-3182, (2012). DOI: https://doi.org/10.1016/j.patcog.2012.03.002
[11]. H. A. Qadir, Y. Shin, J. Solhusvik, J. Bergsland, L. Aabakken, and I. Balasingham, “Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractorCNNalways perform better?” in Proc. 13th Int. Symp. Med. Inf. Commun. Technol. (ISMICT), pp. 1-6, May (2019). DOI: https://doi.org/10.1109/ISMICT.2019.8743694
[12]. J. Kang and J. Gwak, “Ensemble of instance segmentation models for polyp segmentation in colonoscopy images”, IEEE Access, vol. 7, pp. 26440-26447, (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2900672
[13]. M. Akbari et al., “Polyp segmentation in colonoscopy images using fully convolutional network,” in EMBC. IEEE, pp. 69–72, (2018). DOI: https://doi.org/10.1109/EMBC.2018.8512197
[14]. X. Sun, P. Zhang, D. Wang, Y. Cao, and B. Liu, “Colorectal polyp segmentation by u-net with dilation convolution,” in ICMLA. IEEE, pp. 851–858, (2019). DOI: https://doi.org/10.1109/ICMLA.2019.00148
[15]. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, p. 1856–1867, (2020). DOI: https://doi.org/10.1109/TMI.2019.2959609
[16]. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. D. Lange, P. Halvorsen, and H. D. Johansen, “ResUNet++: An advanced architecture for medical image segmentation” in Proc. IEEE Int. Symp. Multimedia (ISM), pp. 225-2255, Dec. (2019). DOI: https://doi.org/10.1109/ISM46123.2019.00049
[17]. P. Wang, X. Xiao, J. R. G. Brown, T. M. Berzin, M. Tu, F. Xiong, X. Hu, P. Liu, Y. Song, D. Zhang, and X. Yang, “Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy”, Nature Biomed. Eng., vol. 2, no. 10, pp. 741-748, (2018). DOI: https://doi.org/10.1038/s41551-018-0301-3
[18]. H. M. Afify, K. K. Mohammed, and A. E. Hassanien, “An improved framework for polyp image segmentation based on SegNet architecture”, Int. J. Imag. Syst. Technol., vol. 31, no. 3, pp. 1741-1751, Sep. (2021). DOI: https://doi.org/10.1002/ima.22568
[19]. Le Thi Thu Hong, Nguyen Chi Thanh, and Tran Quoc Long, “Polyp segmentation in colonoscopy images using ensembles of u-nets with efficientnet and asymmetric similarity loss function,” in 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), IEEE, pp.1–6, (2020). DOI: https://doi.org/10.1109/RIVF48685.2020.9140793
[20]. D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, “Doubleu-net: A deep convolutional neural network for medical image segmentation,” in 2020 IEEE 33rd International symposium on computer-based medical systems (CBMS), pp. 558–564, (2020). DOI: https://doi.org/10.1109/CBMS49503.2020.00111
[21]. D. Jha, P. H. Smedsrud, D. Johansen, T. de Lange, H. D. Johansen, P. Halvorsen, and M. A. Riegler, “A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field andtest-time augmentation”, IEEE J. Biomed. Health Informat., vol. 25, no. 6, pp. 2029-2040, Jun. (2021). DOI: https://doi.org/10.1109/JBHI.2021.3049304
[22]. S. Safarov and T. K. Whangbo, “A-DenseUNet: Adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution,'' Sensors, vol. 21, no. 4, p. 1441, Feb. (2021). DOI: https://doi.org/10.3390/s21041441
[23]. T. Mahmud, B. Paul, and S. A. Fattah, “PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images” Comput. Biol. Med., vol. 128, Art. no. 104119, Jan. (2021). DOI: https://doi.org/10.1016/j.compbiomed.2020.104119
[24]. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “PraNet: Parallel reverse attention network for polyp segmentation” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, pp. 263-273, (2020). DOI: https://doi.org/10.1007/978-3-030-59725-2_26