DESIGN OPTIMIZATION OF A POWER MODULE BOX IN 3D RADAR SYSTEM
143 viewsKeywords:
Heatsink; Power module box; 3D Radar system; Heat transfer; Optimal geometric parameters; FansAbstract
This paper researches a design process of a heatsink in the power module box of the 3D Radar system. Studying the theory of heat transfer across parallel plate-fins of the heatsink to optimize the geometric parameters. The power module boxes are designed based on those optimum geometric parameters. In the next step, the design model is used to simulate temperature under working conditions by using Solidworks simulation software. The design model is then trial manufactured for testing before moving to the mass production.
References
[1]. A. Bar-Cohen and W. W. Rohsenow, “Thermally optimum spacing of vertical, natural convection cooled, parallel plates,” J. Heat Transfer, vol. 106, no. 1, pp. 116–123, 1984, doi: 10.1115/1.3246622.
[2]. P. Bhambare, D. Kaithari, and G. Kharote, “Experimental Investigation on Fin Spacing Optimization in Natural Convection Heat Transfer for Isothermal Rectangular Aluminum Fins on a Vertical Base,” vol. 7, no. 3, pp. 887–893, 2016.
[3]. J. R. Culham and Y. S. Muzychka, “Optimization of plate fin heat sinks using entropy generation minimization,” IEEE Trans. Components Packag. Technol., vol. 24, no. 2, pp. 159–165, 2001, doi: 10.1109/6144.926378.
[4]. C. Gammeter, F. Krismer, and J. W. Kolar, “Weight optimization of a cooling system composed of fan and extruded-fin heat sink,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 509–520, 2015, doi: 10.1109/TIA.2014.2336977.
[5]. S. Lee, “Optimum Design and Selection of Heat Sinks,” IEEE Trans. Components Packag. Manuf. Technol. Part A, vol. 18, no. 4, pp. 812–817, 1995, doi: 10.1109/95.477468.
[6]. M. B. De Stadler, “Optimization of the Geometry of a Heat Sink,” Virginia Sp. Grant Consort. Student Res. Conf., pp. 1–10, 2007.
[7]. H. E. Ahmed, B. H. Salman, A. S. Kherbeet, and M. I. Ahmed, “Optimization of thermal design of heat sinks: A review,” Int. J. Heat Mass Transf., vol. 118, no. January, pp. 129–153, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.099.
[8]. H. T. Dhaiban and M. A. Hussein, “The optimal design of heat sinks: A review,” J. Appl. Comput. Mech., vol. 6, no. 4, pp. 1030–1043, 2020, doi: 10.22055/jacm.2019.14852.
[9]. K. Londhe and V. R. Kaushik, “Heat Sink Design for Optimal Performance of Compact Electronic Appliances - a Review,” J. Adv. Res. Appl. Sci., vol. 4, no. 5, pp. 13–21, 2017.
[10]. D. Christen, M. Stojadinovic, and J. Biela, “Energy Efficient Heat Sink Design: Natural Versus Forced Convection Cooling,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8693–8704, 2017, doi: 10.1109/TPEL.2016.2640454.
[11]. S. W. Churchill and R. Usagi, “A general expression for the correlation of rates of transfer and other phenomena,” AIChE J., vol. 18, no. 6, pp. 1121–1128, 1972, doi: 10.1002/aic.690180606.
[12]. U. Drofenik, A. Stupar, and J. W. Kolar, “Analysis of theoretical limits of forced-air cooling using advanced composite materials with high thermal conductivities,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 1, no. 4, pp. 528–535, 2011, doi: 10.1109/TCPMT.2010.2100730.
[13]. P. Teertstra, M. M. Yovanovich, and J. R. Culham, “Analytical forced convection modeling of plate fin heat sinks,” J. Electron. Manuf., vol. 10, no. 4, pp. 253–261, 2000, doi: 10.1142/S0960313100000320.
[14]. A. Bejan and E. Sciubba, “The optimal spacing of parallel plates cooled by forced convection,” International Journal of Heat and Mass Transfer, vol. 35, no. 12. pp. 3259–3264, 1992, doi: 10.1016/0017-9310(92)90213-C.
[15]. L. S-band, “Bls9g2731l-400; bls9g2731ls-400,” no. April, pp. 1–13, 2017.