Study on heat treatment of copper alloy for fabrication of specialized copper based items

200 views

Authors

  • Nguyen Van Bang (Corresponding Author) Institute of Chemistry and Materials, Academy of Military Science and Technology
  • Ngo Minh Tien Institute of Chemistry and Materials, Academy of Military Science and Technology
  • Phung Khac Nam Ho Institute of Chemistry and Materials, Academy of Military Science and Technology
  • Nguyen Thi Hoai Phuong Institute of Chemistry and Materials, Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.88.2023.109-114

Keywords:

M1 copper alloy; Heat treatment; Hardness; Microstructure.

Abstract

The article studied the effect of different heat treatment regimes on the microstructure and mechanical properties of copper alloy for fabrication of specialized copper based items. The microstructure of the materials was evaluated by optical microscopy on the Axiovert 40MAT instrument. The effect of microstructure on the mechanical properties of the alloy was evaluated through hardness. The results of the research showed that annealing stage greatly affected to the microstructure and properties of the material in the production process of copper cones. The annealing temperature was bansed on deformation process and maintained at temperature of between 280 oC ÷ 400  oC to ensure the small grain size, grain grade of higher than 8.

References

[1]. И.А. Балаганский, Л.А. Мержиевский. “Действие средств поражения и боеприпасов”. - Новосибирск: НГТУ, 408 с, (2012).

[2]. Held M. “Liners for shaped charges”. Journal of. Battlefield Technology, Vol. 4, pp. 1-7, (2001).

[3]. Held M. “Spinning jets from shaped charges with flow turned liners”. Presented at the 12th International Symposium on Ballistics, San Antonio, TX, (1990).

[4]. Баум Ф.А., Орленко Л.П., Станюкович К.П. и др. “Физика взрыва”. / Под ред. К.П. Станюковича. М.: Наука, 800 с, (1975).

[5]. Патент РФ 2412338С1. “Способ и устройство (варианты) формирования высокоскоростных кумулятивных струй для перфорации скважин с глубокими незапестованными каналами и с большим диаметром”, (2011).

[6]. ГОСТ 859-2001. “Медь марки”, (2001).

[7]. Richard Alfred Wilkins. “Copper and copper base alloys: The physical and mechanical properties of copper and its commercial alloys in wrought form (Classic ceprint)”, 370 p, (2017).

[8]. А. Лови, в. В. Кореньков, в. М. Базилевич, в. В. Кораблин. “Отечественные противотанковые гранатометные комплексы”. Пехотное оружие россии, (2001).

[9]. Palash Biswas et al. “Effect of heat treatment on microstructure behavior and hardness of EN 8 steel”. IOP Conference Series: Materials Science and Engineering, 377, (2018). DOI: https://doi.org/10.1088/1757-899X/377/1/012065

[10]. Patent US20190316242A1. “Gradient control method for microstructure ultrafine crystallization of deep cone copper shaped charge liner”, (2019).

[11]. Патент РФ №2588533C1. “Способ изготовления медной облицовки кумулятивного заряда”, (2016).

[12]. Патент РФ №2457425C1. “Способ изготовления облицовки кумулятивного заряда и облицовка, изготовленная данным способом”, (2012).

[13]. Патент РФ №2231739C2. “Способ изготовления облицовки кумулятивного заряда”, (2011).

[14]. В.И. Сакало, Ю.С. “Гусева, Т.В. Иншакова. Влияние температуры термообработки на механические свойства меди М1”. Вестник Брянского государственного технического университета, № 3(47), с. 94-97, (2015). DOI: https://doi.org/10.12737/23017

Published

25-06-2023

How to Cite

[1]
Nguyễn Văn Bằng, Ngô Minh Tiến, Phùng Khắc Nam Hồ, and Nguyễn Thị Hoài Phương, “Study on heat treatment of copper alloy for fabrication of specialized copper based items”, JMST, vol. 88, no. 88, pp. 109–114, Jun. 2023.

Issue

Section

Research Articles

Most read articles by the same author(s)