Fabrication of HgZn3 material and their application as electrodes in mercury oxide-zinc batteries
143 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.97.2024.105-112Keywords:
Zinc/mercuric oxide Battery; XRD; EDX; SEM; Primary electrochemical battery; Amalgam.Abstract
The mercury oxide-zinc battery is a primary electrochemical cell that operates in an alkaline environment. It finds applications in many disciplines such as science, technology, medicine, and field equipment. In order to improve resistance to electrode corrosion in an alkaline environment and to maximize discharge efficiency and battery capacity, it is necessary to amalgamate zinc. This work described a technique for producing HgZn3 amalgamated zinc. The research findings indicated that a mass ratio of 3:1 between Zn and HgCl2 is the most favorable for producing the highest quality amalgamated product to be utilized as the negative electrode in a mercury oxide-zinc battery. The material underwent characterization using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and electron microscopy (SEM). The battery depleted to a voltage of 0.9 V during a span of roughly 209 hours, resulting in a capacity of 2823 mAh.
References
[1]. D. Linden, T. B. Reddy. “Handbook Of Batteries third edition”, New York: McGraw-Hill, (2002).
[2]. Clive Sparkes, Neville K. Lacey “A study of mercuric oxide and zinc-air battery life in hearing aids”. The Journal of Laryngology & Otology, Volume 111, Issue 9, pp. 814 - 819, (1997). DOI: https://doi.org/10.1017/S002221510013871X
[3]. Alvin J. Salkind & Samuel Ruben. “Mercury Batteries for Pacemakers and Other Implantable Devices”. Batteries for Implantable Biomedical Devices , pp. 261 – 274, (2017). DOI: https://doi.org/10.1007/978-1-4684-9045-9_9
[4]. T. R. Crompton. “Mercury - Zinc and other Mercury Types of Battery”. Small Batteries, pp. 59 - 110, (1982). DOI: https://doi.org/10.1007/978-1-349-06319-2_4
[5]. Дамье В.Н., Рысухин Н. Ф.. “Роизводство первичных химических источников тока”. М: Высшая Школа, 288 с., (1980).
[6]. Кромптон Т. “Первичные источники тока”. Перевод с англ, М.: Мир, 328 с., (1986).
[7]. ОАО «Ярославский радиозавод», Портативные, носимые и возимые средства наземной подвижной связи, с 55, (2014).
[8]. Wolfgang Glaeser. “Process for preparation of zinc powder for alkaline batteries by amalgamation of zinc powder”. Patent US4460543A, (1983).
[9]. Г. Брауэра. “Руководство по препаративной неорганической химии”. Издативлит, 898 с., (1956).
[10]. Н. С. Вульфсона. “Препаративная органическая химия”. Госхимизлат, 889, (1959).
[11]. G. Jander stuttgart (Herausgeber). “Neuere massenanalytische Methoden”, S. 455, (1956).
[12]. Б.Д.Сумм, Ю.В.Горюнов, Н.В.Перцов, В.Ю. Траскин, Е.Д.Щукин. “Физика металлов и металловедение”. М. : Наука, 757 с., (1962).
[13]. Puselj, M,. Ban, Z., Drasner, A,. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie (33,1978-41,1986), 37, 557 - 559, (1982)
[14]. О.М.Климов. “Изучение номенклатуры ртутьсодержащих отходов в Российской Федерации с целью их паспортизации”. Мытищи: НИЦПУРО, 49 с., (2000).
[15]. Бессонов В.В., Янин Е.П.. “Ртутьсодержащие приборы и устройства: экологические аспекты производства и использования”. М.: ИМГРЭ, (2004).
[16]. Phùng Khắc Nam Hồ, Nguyễn Văn Bằng, Lê Trung Hiếu, Lã Đức Dương, Nguyễn Thị Hoài Phương. “Khảo sát đặc trưng điện hoá và tính chất vật liệu các điện cực pin đơn RTS-85 định hướng chế tạo bộ nguồn điện hoá cho thiết bị liên lạc cứu hộ khẩn cấp”. Tạp chí Khoa học và Công nghệ Đại học Thái Nguyên, 228(14), Tr. 90 - 97, (2023). DOI: https://doi.org/10.34238/tnu-jst.8549