Prediction of the conjugate depth of the hydraulic jump in the trapezoidal channel using Random Forest regression
265 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.82.2022.150-158Keywords:
Machine Learning; Sequent depth; Hydraulic jump; Trapezoidal channel; Pi theory; Random Forest.Abstract
Prediction of the sequent depths of the hydraulic jump in the trapezoidal channel using the theoretical equation is a challenging task. Therefore, existing studies have attempted to solve the task by conducting experiments or using semi-empirical calculations. The paper proposes a novel method that applies Buckingham's Pi theory and the Random Forest regression to improve the prediction accuracy of the sequent depths of the hydraulic jump in the trapezoidal channel. The study has shown that Machine Learning models can be efficient for the determination of the geometrical features of the jump and have high ability in many real projects.
References
[1]. Sergio Montes “Hydraulics of Open Channel Flow”. Amer Society of Civil Engineers. ISBN-10: 0784403570, (1998).
[2]. Ven Te Chow. “Open Channel hydraulic”, McGrawHill, New York. (1958).
[3]. Robert Wanoschek & Willi H. Hager. “Hydraulic jump in trapezoidal channel”, Journal of Hydraulic Research, 27:3, pp.429-446. (1989). DOI: 10.1080/00221688909499175. DOI: https://doi.org/10.1080/00221688909499175
[4]. Sadiq Salman Muhsun. “Characteristics of the Hydraulic Jump in Trapezoidal Channel Section”. Journal of Environmental Studies [JES] 9: pp.53-63. (2012). DOI: https://doi.org/10.21608/jesj.2012.191531
[5]. Samir Kateb. “Etude theorique et experimentale de quelques types de ressauts hydrauliques dans un canal trapezoïdal”. PhD thesis of University Mohamed Khider Biskra (Université de Biskra), Algeria. (2014). http://thesis.univ-biskra.dz/
[6]. Samir kateb, Mahmoud Debabeche, Ferhat Riguet. “Hydraulic jump in a sloped trapezoidal channel”. Energy Procedia 74, pp. 251 – 257. (2015). DOI: https://doi.org/10.1016/j.egypro.2015.07.591
[7]. Sonia Cherhabil và Mahmoud Debabeche. “Experimental Study of Sequent Depths Ratio of Hydraulic Jump in Sloped Trapezoidal Chanel”. In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, pp. 353-358. (2016). Doi:10.15142/T3610628160853 (ISBN 978-1-884575-75-4).
[8]. SIAD, Rafik. “Ressaut hydraulique dans un canal trapézoïdal brusquement élargi” (Hydraulic jump in a sharply widened trapezoidal channel). Doctoral thesis, University Mohamed Khider Biskra (Université de Biskra), Algeria. (2018). Web: http://thesis.univ-biskra.dz/
[9]. Shahin S.A, Othman K.M, Alan A.G. “Experimental Study of Hydraulic Jump Characteristics in Trapezoidal Channels”. ZANCO Journal of Pure and Applied Sciences (The official scientific journal of Salahaddin University-Erbil). ZJPAS 30(s1), pp.70-75. (2018). DOI: 10.21271/ZJPAS.30.s1.8. DOI: https://doi.org/10.21271/ZJPAS.30.s1.8
[10]. Bahador Fatehi Nobarian, Hooman Hajikandi, Yousef Hassanzadeh, Saeed Jamali. “Experimental and analytical investigation of secondary current cells effects on hydraulic jump characteristics in trapezoidal channels”. Tecnología y ciencias del agua, 10(3), pp. 190-218. (2019). DOI: 10.24850/j-tyca-2019-03-08. DOI: https://doi.org/10.24850/j-tyca-2019-03-08
[11]. Rajaratnam, N. “The hydraulic jump in sloping channels”. Irrigation và Power. 32(2), pp137–149, (1966).
[12]. Mahmoud Ali R. Eltoukhy. “Hydraulic jump characteristics for different open channel and stilling basin layouts”. International Journal of Civil Engineering và Technology (IJCIET) Volume 7, Issue 2, pp 290–301. (2016).
[13]. Hager, W.H. “Energy Dissipators and Hydraulic Jump”. Kluwer Academic, Dordrecht, The Netherlands. (1992). ISBN 0-7923-1508-1. DOI: https://doi.org/10.1007/978-94-015-8048-9_1
[14]. Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, (1984).
[15]. R. Sathya et al. “Comparison of supervised and unsupervised learning algorithms for pattern recognition”. International journal of advanced research in Artificial Intelligence. Vol 2. Issue 2, (2013). DOI: https://doi.org/10.14569/IJARAI.2013.020206
[16]. Steven L. B., Bernd R. N., and Petros K. “Machine Learning for Fluid Mechanics”. Annu. Rev. Fluid Mech. 2020. 52:477–508, (2020). DOI: https://doi.org/10.1146/annurev-fluid-010719-060214
[17]. Melhem H.G. và Nagaraja S. “Machine learning and its application to civil engineering systems”. Civil Engineering Systems, 13:4, p259-279, pp. 259 – 279, (1996). DOI: https://doi.org/10.1080/02630259608970203
[18]. Mahdi Naseri, Faridah Othman. “Determination of the length of hydraulic jumps using artificial neural networks”. Advances in Engineering Software 48 (2012) 27–31, (2012). DOI: https://doi.org/10.1016/j.advengsoft.2012.01.003
[19]. Larbi Houichi, Noureddine Dechemi, Salim Heddam và Bachir Achour. “An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel”. Journal of Hydroinformatics 15.1, pp. 147-154, (2013). DOI: 10.2166/hydro.2012.138. DOI: https://doi.org/10.2166/hydro.2012.138
[20]. Mohamed F. Sauida. “Prediction of hydraulic jump length downstream of multi-vent regulators using Artificial Neural Networks”. Ain Shams Engineering Journal 7, p819–826, (2016). DOI: https://doi.org/10.1016/j.asej.2015.12.005
[21]. Masoud Karbasi, H. Md. Azamathulla. “GEP to Predict Characteristics of a Hydraulic Jump Over a Rough Bed”. KSCE Journal of Civil Engineering 20(7): pp.3006-3011, (2016). DOI: https://doi.org/10.1007/s12205-016-0821-x
[22]. P. Khosravinai1, H. Sanikhani1, Ch. Abdi. “Predicting Hydraulic Jump Length on Rough Beds Using Data-Driven Models”. Journal of Rehabilitation in Civil Engineering 6-2, pp.139-153, (2018).
[23]. Ghorban Mahtabi, Barkha Chaplot, Hazi Mohammad Azamathulla and Mahesh Pal. “Classification of Hydraulic Jump in Rough Beds”. Water 2020, 12(8), 2249, (2020). DOI: https://doi.org/10.3390/w12082249
[24]. Akram Abbaspour. “Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming”. Water Science and Engineering, 6(2): pp. 189-198, (2013).
[25]. Breiman, L. “Random Forests”. Machine Learning. Vol. 45, pp. 5–32, (2001). DOI: https://doi.org/10.1023/A:1010933404324