Controllable light group velocity in a degenerate two-level medium under the assistance of an external magnetic field

214 views

Authors

  • Hoang Minh Dong Ho Chi Minh City University of Industry and Trade
  • Thai Doan Thanh Ho Chi Minh City University of Industry and Trade
  • Nguyen Thi Thu Hien Ho Chi Minh City University of Industry and Trade
  • Trang Huynh Dang Khoa Ho Chi Minh City University of Industry and Trade
  • Le Van Doai Vinh University
  • Nguyen Manh Thang (Corresponding Author) Academy of Military Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.93.2024.106-113

Keywords:

Electromagnetically induced transparency; Electromagnetically induced absorption; Degenerate two-level atomic; Group index; Group velocity; Subluminal and superluminal light propagation.

Abstract

In this work, we proposed a simple model for control of subluminal and superluminal light propagation via an external magnetic field in a lambda configuration degenerate two-level atomic medium. We show that the absorption-dispersion properties and group index under the influence of the strength of coupling laser and external magnetic fields are controlled. By changing the direction and magnitude of the magnetic field, the medium switches from transparency with normal dispersion to enhanced absorption with anomalous dispersion at the line center, corresponding with the transfer from slow light to fast light. This work may provide for the application realization of magneto-optic switches and storage devices in quantum information processing.

References

[1]. Boller K J, Imamoglu A, Harris S E, “Observation of electromagnetically induced transparency”, Phys. Rev. Lett. 66, 2593, (1991). DOI: https://doi.org/10.1103/PhysRevLett.66.2593

[2]. Fleischhauer M, Imamoglu A, Marangos J P, “Electromagnetically induced transparency: optics in coherent media”, Rev. Mod. Phys. 77, 633, (2005). DOI: https://doi.org/10.1103/RevModPhys.77.633

[3]. L.V. Hau, S. E. Harris, Z. Dutton, C.H. Bejroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature, 397, 594, (1999). DOI: https://doi.org/10.1038/17561

[4]. Z. Dutton, N.G.C. Slowe, L.V. Hau, “The art of taming light: ultra-slow and stopped light”, Europhysics News, 35, 33–39, (2004). DOI: https://doi.org/10.1051/epn:2004201

[5]. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation”, Phys. Rev. Lett. 83, 1767, (1999). DOI: https://doi.org/10.1103/PhysRevLett.83.1767

[6]. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler”, Opt. Exp. 15, 5264, , (2007). DOI: https://doi.org/10.1364/OE.15.005264

[7]. P C Ku, C J Chang-Hasnain and S L Chuang, “Slow light in semiconductor heterostructures”, J. Phys. D: Appl. Phys. 40, 93, (2007). DOI: https://doi.org/10.1088/0022-3727/40/5/R01

[8]. J Mork, P Lunnemann, W Xue, Y Chen, P Kaer and T R Nielsen, “Slow and fast light in semiconductor waveguides”, Semicond. Sci. Technol. 25, 083002, (2010). DOI: https://doi.org/10.1088/0268-1242/25/8/083002

[9]. Agus Muhamad Hatta, Ali A. Kamli, Ola A. Al-Hagan and Sergey A. Moiseev, “Slow light with electromagnetically induced transparency in optical fibre”, J. Phys. B: At. Mol. Opt. Phys. 48, 155502, (2015). DOI: https://doi.org/10.1088/0953-4075/48/15/155502

[10]. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature. 409, 490-493, (2001). DOI: https://doi.org/10.1038/35054017

[11]. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of Light in Atomic Vapor”, Phys. Rev. Lett. 86, 783–786, (2001). DOI: https://doi.org/10.1103/PhysRevLett.86.783

[12]. D.X. Khoa, N.V. Ai, H. M. Dong, L.V. Doai, and N.H. Bang, “All-optical switching in a medium of a four-level vee-cascade atomic medium”, Opt Quant Electron. 54 (3), 164, (2022). DOI: https://doi.org/10.1007/s11082-022-03530-0

[13]. Lezma A, Barreiro S and Akulshin A M, "Electromagnetically induced absorption", Phys. Rev. A 59, 4732, (1999). DOI: https://doi.org/10.1103/PhysRevA.59.4732

[14]. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hammer, "Observation of Ultraslow and Stored Light Pulses in a Solid", Phys. Rev. Lett. 88, 023602, (2002). DOI: https://doi.org/10.1103/PhysRevLett.88.023602

[15]. M. Mahmoudi, M. Sahrai, H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields”, Phys. Lett. A 357, 66–71, (2006). DOI: https://doi.org/10.1016/j.physleta.2006.04.017

[16]. Vineet Bharti, Vasant Natarajan, “Sub- and superluminal light propagation using a Rydberg state”, Opt. Comm. 392, 180-184, (2017). DOI: https://doi.org/10.1016/j.optcom.2016.12.080

[17]. T. D. Thanh, N. T. Anh, N. T. T. Hien, H. M. Dong, N. X. Hao, D. X. Khoa, N. H. Bang, “Subluminal and superluminal light pulse propagation under an external magnetic field in a vee-type three-level atomic medium”, Photonics Letters of Poland, 13, 4-6, (2021). DOI: https://doi.org/10.4302/plp.v13i1.1076

[18]. L.N.M. Anh, N.H. Bang, N.V. Phu, H.M. Dong, N.T.T. Hien, L.V. Doai, "Slow light amplification in a three-level cascade-type system via spontaneously generated coherence and incoherent pumping", Opt Quant Electron. 55 (3), 246, (2023). DOI: https://doi.org/10.1007/s11082-022-04521-x

[19]. H. Cheng, H. -M. Wang, S. -S. Zhang, P. -P. Xin, J. Luo and H. -P. Liu, “Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field”, J. Phys. B: At. Mol. Opt. Phys. 50, 095401, (2017). DOI: https://doi.org/10.1088/1361-6455/aa6824

[20]. C. Mishra, A. Chakraborty, A. Srivastava, S. K. Tiwari, S. P. Ram, V. B. Tiwari and S. R. Mishr, “Electromagnetically induced transparency in Λ-systems of 87Rb atom in magnetic field”, J. Mod. Opt. 65, 2269-2277, (2018). DOI: https://doi.org/10.1080/09500340.2018.1502824

[21]. Hoang Minh Dong, and Nguyen Huy Bang, “Controllable optical switching in a closed-loop three-level lambda system”, Phy. Scr. 94, 115510, (2019). DOI: https://doi.org/10.1088/1402-4896/ab2a7d

[22]. H.M. Dong, L.T.Y. Nga, and N.H. Bang, “Optical switching and bistability in a degenerated two-level atomic medium under an external magnetic field”, App. Opt. 58, 4192, (2019). DOI: https://doi.org/10.1364/AO.58.004192

[23]. H.M. Dong, L.T.Y. Nga, D.X. Khoa, N.H. Bang, “Controllable ultraslow optical solitons in a degenerated two-level atomic medium under EIT assisted by a magnetic field”, Scientific Reports, 10, 15298, (2020). DOI: https://doi.org/10.1038/s41598-020-72256-4

[24]. N.T. Anh, N.T.T. Hien, T.D. Thanh, L.V. Doai, D.X. Khoa, N.H. Bang, L.T.Y. Nga, and H.M. Dong, “External magnetic field-assisted polarization-dependent optical bistability and multistability in a degenerate two-level EIT medium”, Laser Physics Lett. 20, 035201, (2023). DOI: https://doi.org/10.1088/1612-202X/acb042

[25]. H.M. Dong, T.D. Thanh, N.T.T. Hien, L.T.Y. Nga, N.H. Bang, “Controlling optical switching by an external magnetic field in a degenerate vee-type atomic medium”, Physics Letters A, 469, 128765, (2023). DOI: https://doi.org/10.1016/j.physleta.2023.128765

[26]. Daniel A. Steck, “Rubidium 87D Line Data”, http://steck.us/alkalidata.

Downloads

Published

25-02-2024

How to Cite

Hoang Minh, D., Thai Doan Thanh, Nguyen Thi Thu Hien, Trang Huynh Dang Khoa, Le Van Doai, and Nguyen Manh Thang. “Controllable Light Group Velocity in a Degenerate Two-Level Medium under the Assistance of an External Magnetic Field”. Journal of Military Science and Technology, vol. 93, no. 93, Feb. 2024, pp. 106-13, doi:10.54939/1859-1043.j.mst.93.2024.106-113.

Issue

Section

Research Articles

Categories