Non-invasive systems for sleep monitoring: Respiratory rate and sleep posture classification
26 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.104.2025.3-14Keywords:
Accelerometer; Respiratory rate; Sleep position; CNN.Abstract
Sleep plays an essential role in human health. Monitoring sleep has increasingly become an important tool for gaining deeper insights into sleep behavior and detecting related health issues. Polysomnography (PSG) in clinical settings is the gold standard for sleep analysis; however, it is expensive and challenging to implement over long periods. As a result, home-based sleep monitoring methods, particularly non-invasive sensor-based systems, are gaining significant attention. This paper focuses on reviewing recent studies related to non-invasive sleep monitoring systems, including both wearable and non-wearable methods. These systems are designed to continuously measure and monitor users' breathing patterns while also detecting and classifying their sleep postures. Additionally, the paper explores future directions for developing respiratory monitoring and sleep posture classification systems that can operate flexibly across different environments, including settings outside professional medical facilities.
References
[1]. Z. Xie, F. Chen, W. A. Li, X. Geng, C. Li, X. Meng, Y. Feng, W. Liu, F. Yu, "A review of sleep disor-ders and melatonin," Neurol. Res., vol. 39, no. 6, pp. 559–565, (2017). DOI: https://doi.org/10.1080/01616412.2017.1315864
[2]. K. Spiegel, K. Knutson, R. Leproult, E. Tasali, E. V. Cauter, "Sleep loss: a novel risk factor for insu-lin resistance and Type 2 diabetes," J. Appl. Physiol., vol. 99, no. 5, pp. 2008–2019, (2005). DOI: https://doi.org/10.1152/japplphysiol.00660.2005
[3]. E. Borsini, M. Blanco, M. Bosio, M. Schrappe, G. Ernst, D. Nosetto, M. Schiavone, "Prevalence of sleep apnea and cardiovascular risk factors in patients with hypertension in a day hospital model," Clin. Exp. Hypertens., vol. 40, no. 3, pp. 231–237, (2017). DOI:10.1080/10641963.2017.1356841. DOI: https://doi.org/10.1080/10641963.2017.1356841
[4]. Y. Ishibashi, A. Shimura, "Association between work productivity and sleep health: a cross-sectional study in Japan," Sleep Health, vol. 6, no. 3, pp. 270–276, (2020). DOI: https://doi.org/10.1016/j.sleh.2020.02.016
[5]. J. Kalsi, T. Tervo, A. Bachour, M. Partinen, "Sleep versus non-sleep-related fatal road accidents," Sleep Med., vol. 51, pp. 148–152, (2018). DOI: https://doi.org/10.1016/j.sleep.2018.04.017
[6]. Z. Hussain, S. Sagar, W. E. Zhang, Q. Z. Sheng, "A cost-effective and non-invasive system for sleep and vital signs monitoring using passive RFID tags," in Proc. 16th EAI Int. Conf. Mobile Ubiquitous Syst. Comput. Netw. Services, pp. 153–161, (2019). DOI: https://doi.org/10.1145/3360774.3360797
[7]. H.-T. Wu, R. Talmon, Y.-L. Lo, "Assess sleep stage by modern signal processing techniques," IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1159–1168, (2014). DOI: https://doi.org/10.1109/TBME.2014.2375292
[8]. Z. Hussain, Q. Z. Sheng, W. E. Zhang, J. Ortiz, S. Pouriyeh, "Non-invasive Techniques for Monitoring Different Aspects of Sleep: A Comprehensive Review," ACM Trans. Comput. Healthc., vol. 3, no. 2, Art. 24, pp. 1–26, Apr. (2022). DOI:10.1145/3491245. DOI: https://doi.org/10.1145/3491245
[9]. S. Fallmann, L. Chen, "Computational sleep behavior analysis: A survey," IEEE Access, vol. 7, pp. 142421–142440, (2019).
[10]. K. S. Park, S. H. Choi, "Smart technologies toward sleep monitoring at home," Biomed. Eng. Lett., vol. 9, no. 1, pp. 73–85, (2019). DOI: https://doi.org/10.1007/s13534-018-0091-2
[11]. I. Perez-Pozuelo, B. Zhai, J. Palotti, R. Mall, M. Aupetit, J. M. Garcia-Gomez, S. Taheri, Y. Guan, L. Fernandez-Luque, "The future of sleep health: a data-driven revolution in sleep science and medi-cine," NPJ Digit. Med., vol. 3, no. 1, pp. 1–15, (2020). DOI: https://doi.org/10.1038/s41746-020-0244-4
[12]. S. Kwon et al., "At-home wireless sleep monitoring patches for the clinical assessment of sleep qual-ity and sleep apnea," Sci. Adv., vol. 9, eadg9671, (2023). DOI:10.1126/sciadv.adg9671. DOI: https://doi.org/10.1126/sciadv.adg9671
[13]. N. Surantha, G. P. Kusuma, S. M. Isa, "Internet of things for sleep quality monitoring system: A sur-vey," in 2016 11th Int. Conf. Knowl. Inf. Creativity Support Syst. (KICSS), IEEE, pp. 1–6, (2016). DOI: https://doi.org/10.1109/KICSS.2016.7951426
[14]. V. Ibáñez, J. Silva, O. Cauli, "A survey on sleep questionnaires and diaries," Sleep Med., vol. 42, pp. 90–96, (2018). DOI: https://doi.org/10.1016/j.sleep.2017.08.026
[15]. G. Matar, J.-M. Lina, J. Carrier, G. Kaddoum, "Unobtrusive sleep monitoring using cardiac, breath-ing and movements activities: an exhaustive review," IEEE Access, vol. 6, pp. 45129–45152, (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2865487
[16]. I. Sadek, A. Demarasse, M. Mokhtari, "Internet of things for sleep tracking: wearables vs. nonwear-ables," Health Technol., pp. 1–8, (2019). DOI: https://doi.org/10.1007/s12553-019-00318-3
[17]. S. Fallmann, L. Chen, "Computational sleep behavior analysis: A survey," IEEE Access, vol. 7, pp. 142421–142440, (2019). DOI: https://doi.org/10.1109/ACCESS.2019.2944801
[18]. H. Liu, J. Allen, D. Zheng, F. Chen, "Recent development of respiratory rate measurement technolo-gies," Physiol. Meas., vol. 40, no. 7, 07TR01, (2019). DOI: https://doi.org/10.1088/1361-6579/ab299e
[19]. C. Massaroni, A. Nicolò, D. Lo Presti, M. Sacchetti, S. Silvestri, E. Schena, "Contact-based methods for measuring respiratory rate," Sensors, vol. 19, pp. 908, (2019). DOI: https://doi.org/10.3390/s19040908
[20]. C. Massaroni, A. Nicolò, M. Sacchetti, E. Schena, "Contactless methods for measuring respiratory rate: A review," IEEE Sens. J., vol. 21, pp. 12821–12839, (2020). DOI: https://doi.org/10.1109/JSEN.2020.3023486
[21]. K. H. Chon, S. Dash, K. Ju, "Estimation of respiratory rate from photoplethysmogram data using time–frequency spectral estimation," IEEE Trans. Biomed. Eng., vol. 56, no. 8, pp. 2054–2063, (2009). DOI: https://doi.org/10.1109/TBME.2009.2019766
[22]. D. Bian, P. Mehta, N. Selvaraj, "Respiratory rate estimation using PPG: A deep learning approach," in Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Montreal, Canada, pp. 5948–5952, (2020). DOI: https://doi.org/10.1109/EMBC44109.2020.9176231
[23]. S. Lee, C.-H. Son, M. K. Albertini, H. C. Fernandes, "Multi-phases and various feature extraction and selection methodology for ensemble gradient boosting in estimating respiratory rate," IEEE Access, vol. 8, pp. 125648-125658, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.3007524
[24]. S. Orfanidis, Optimum Signal Processing, 2nd ed., New York, NY, USA: Macmillan, 1988, ch. 5.
[25]. T. Li, M. Zhou, "ECG classification using wavelet packet entropy and random forests," Entropy, vol. 18, no. 8, pp. 1-16, (2016). DOI: https://doi.org/10.3390/e18080285
[26]. R. F. Leonarduzzi, G. Schlotthauer, M. E. Torres, "Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia," in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol., Buenos Aires, Argentina, pp. 110-113, (2010). DOI: https://doi.org/10.1109/IEMBS.2010.5626091
[27]. S. Liu, J. Yao, M. Motani, "Early prediction of vital signs using generative boosting via LSTM net-works," in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), San Diego, CA, USA, pp. 437-444, (2019). DOI: https://doi.org/10.1109/BIBM47256.2019.8983313
[28]. A. K. Kumar, M. Ritam, L. Han, S. Guo, R. Chandra, "Deep learning for predicting respiratory rate from biosignals," Comput. Biol. Med., vol. 144, Art. no. 105338, (2022). DOI: https://doi.org/10.1016/j.compbiomed.2022.105338
[29]. J. Hernandez, D. McDuff, R. W. Picard, "Biowatch: estimation of heart and breathing rates from wrist motions," in Proc. 9th Int. Conf. Pervasive Comput. Technol. Healthc. (PervasiveHealth), pp. 169-176, (2015). DOI: https://doi.org/10.4108/icst.pervasivehealth.2015.259064
[30]. C.-L. Shen, T.-H. Huang, P.-C. Hsu, Y.-C. Ko, F.-L. Chen, W.-C. Wang, C.-T. Chan, "Respiratory rate estimation by using ECG, impedance, and motion sensing in smart clothing," J. Med. Biol. Eng., vol. 37, pp. 826-842, (2017). DOI: https://doi.org/10.1007/s40846-017-0247-z
[31]. A. Havriushenko, K. Slyusarenko, I. Fedorin, "Smartwatch based respiratory rate estimation during sleep using CNN/LSTM neural network," in Proc. IEEE 40th Int. Conf. Electron. Nanotechnol. (ELNANO), Kyiv, Ukraine, pp. 584-587, (2020). DOI: 10.1109/ELNANO50318.2020.9088913. DOI: https://doi.org/10.1109/ELNANO50318.2020.9088913
[32]. Z. Xing, W. Gao, G. Chuai, "Research on sleeping position recognition algorithm based on human body vibration signal," in Proc. 2nd Int. Conf. Power Electron. Comput. Appl. (ICPECA), IEEE, pp. 403-406, (2022). DOI: https://doi.org/10.1109/ICPECA53709.2022.9719095
[33]. A. P. Rodríguez, D. Gil, C. Nugent, J. M. Quero, "In-bed posture classification from pressure mat sensors for the prevention of pressure ulcers using convolutional neural networks," in Bioinformat-ics and Biomedical Engineering, Springer, pp. 338–349, (2022). DOI: https://doi.org/10.1007/978-3-030-45385-5_30
[34]. R. Yousefi, S. Ostadabbas, M. Faezipour, M. Farshbaf, M. Nourani, L. Tamil, M. Pompeo, "Bed pos-ture classification for pressure ulcer prevention," in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 7175-7178, (2011). DOI: https://doi.org/10.1109/IEMBS.2011.6091813
[35]. S. Liu, X. Huang, N. Fu, C. Li, Z. Su, S. Ostadabbas, "Simultaneously-collected multimodal lying pose dataset: Enabling in-bed human pose monitoring," IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 1106–1118, (2023). DOI: https://doi.org/10.1109/TPAMI.2022.3155712
[36]. P. Jeng, L.-C. Wang, "An accurate, low-cost, easy-to-use sleep posture monitoring system," in Proc. Int. Conf. Appl. Syst. Innov. (ICASI), IEEE, pp. 903-905, (2017). DOI: https://doi.org/10.1109/ICASI.2017.7988585
[37]. S. Jeon, A. Paul, H. Lee, Y. Bun, S. H. Son, "SleePS: Sleep position tracking system for screening sleep quality by wristbands," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), IEEE, pp. 3141-3146, (2017). DOI: https://doi.org/10.1109/SMC.2017.8123110
[38]. T.-H. Dao, H.-Y. Hoang, V.-N. Hoang, D.-T. Tran, D.-N. Tran, "Human activity recognition system for moderate performance microcontroller using accelerometer data and random forest algorithm," EAI Endorsed Trans. Ind. Netw. Intell. Syst., vol. 9, no. 4, pp. e4–e4, (2022). DOI: https://doi.org/10.4108/eetinis.v9i4.2571
[39]. N. T. Thu, T.-H. Dao, B. B. Quoc, D.-N. Tran, P. V. Thanh, D.-T. Tran, "Real-time wearable-device based activity recognition using machine learning methods," Int. J. Comput. Digit. Syst., vol. 11, no. 1, pp. 321–333, (2022). DOI: https://doi.org/10.12785/ijcds/120126
[40]. E. P. Doheny, M. M. Lowery, A. Russell, S. Ryan, "Estimation of respiration rate and sleeping posi-tion using a wearable accelerometer," in Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), IEEE, pp. 4668-4671, (2020). DOI: https://doi.org/10.1109/EMBC44109.2020.9176573
[41]. R. S. Abdulsadig, S. Singh, Z. Patel, E. Rodriguez-Villegas, "Sleep posture detection using an accel-erometer placed on the neck," in Proc. 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), IEEE, pp. 2430-2433, (2022). DOI: https://doi.org/10.1109/EMBC48229.2022.9871300