Tổng hợp, nghiên cứu tính chất quang của các nano bán dẫn lõi/vỏ ZnTe/ZnSe và lõi/vỏ/vỏ ZnTe/ZnSe/ZnS
146 lượt xemDOI:
https://doi.org/10.54939/1859-1043.j.mst.92.2023.114-120Từ khóa:
Nano tinh thể; ZnTe/ZnSe; Tính chất quang; Công suất kích thích.Tóm tắt
Các nano tinh thể (NC) bán dẫn có cấu trúc lõi/vỏ ZnTe/ZnSe và lõi/vỏ/vỏ ZnTe/ZnSe/ZnS được chế tạo thành công bằng phương pháp hóa ướt trong dung môi ODE. Cấu trúc tinh thể, đặc trưng phonon và các tính chất quang học của các NC được khảo sát thông qua giản đồ nhiễu xạ tia X (XRD), phổ tán xạ Raman (RS), phổ huỳnh quang (PL), thời gian phân rã PL, và phổ hấp thụ (Abs). Sự phát triển của các lớp vỏ ZnSe trên lõi ZnTe và lớp vỏ ZnS trên các NC ZnTe/ZnSe được chứng minh thông qua giản đồ XRD và tán xạ RS. Kết quả quan sát từ giản đồ XRD cho thấy tất cả các NC chế tạo được đều kết tinh ở cấu trúc lập phương. Lớp vỏ ZnS đã tăng cường đáng kể hiệu suất lượng tử (QY) của các NC ZnTe/ZnSe. Ảnh hưởng của công suất kích thích lên các tính chất phát xạ của các NC ZnTe, ZnTe/ZnSe và ZnTe/ZnSe/ZnS đã được nghiên cứu và giải thích chi tiết.
Tài liệu tham khảo
[1]. A. Sadao, “Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors”, New Jersey, Wiley, (2009).
[2]. V. V. Prokopiv, B. S. Dzundza, S. V. Sharyn, L. V. Turovska, O. M. Matkivskyi, “Electrical properties of cadmium telluride thin films doped with calcium and lithium”, Phys. Chem. Solid State, Vol. 21, pp. 232–237, (2020). DOI: https://doi.org/10.15330/pcss.21.2.232-237
[3]. N. X. Ca, N. T. Hien. et al, “Optical and Ferromagnetic Properties of Ni-Doped CdTeSe Quantum Dots”, J. Electron. Mater, Vol. 48, pp. 2593–2599, (2019). DOI: https://doi.org/10.1007/s11664-019-07017-9
[4]. H. T. Van, N. D. Vinh, P. M. Tan, U. T. D. Thuy, N. X. Ca, N. T. Hien, “Synthesis and optical properties of tunable dual emission copper doped CdTe1-xSex alloy nanocrystals”, Optical Materials, Vol. 97, pp.109392, (2019). DOI: https://doi.org/10.1016/j.optmat.2019.109392
[5]. M. M. Tan, Y. Yu, H. S. Lee, “Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate”, Journal of Alloys and Compounds, Vol. 658, pp. 71-75, (2016). DOI: https://doi.org/10.1016/j.jallcom.2015.10.226
[6]. M. Masab, H. Muhammad, F. Shah, M. Yasir, M. Hanif, “Facile synthesis of CdZnS QDs: Effects of different capping agents on the photoluminescence properties”, Materials Science in Semiconductor Processing, Vol. 81, pp. 113-117, (2018). DOI: https://doi.org/10.1016/j.mssp.2018.03.023
[7]. V. T. K. Lien, P. M. Tan, N. T. Hien, V. X. Hoa, T. T. K. Chi, N. X. Truong, V. T. K. Oanh, N. T. M. Thuy, N. X. Ca, “Tunable photoluminescent Cu-doped CdS/ZnSe type-II core/shell quantum dots”, Journal of Luminescence, Vol. 215, pp. 116627, (2019). DOI: https://doi.org/10.1016/j.jlumin.2019.116627
[8]. N. T. Hien, T. T. K. Chi, N. D. Vinh, H. T. Van, L. D. Thanh, P. V. Do, V. P. Tuyen, N. X. Ca, “Synthesis, characterization and the photoinduced electron-transfer energetics of CdTe/CdSe type-II core/shell quantum dots”, Journal of Luminescence, Vol. 217, pp. 116822, (2020). DOI: https://doi.org/10.1016/j.jlumin.2019.116822
[9]. N. X. Ca, N. T. Hien, N. T. Luyen, V. T. K. Lien, L. D. Thanh, P. V. Do, N. Q. Bau, T. T. Pham, “Photoluminescence properties of CdTe/CdTeSe/CdSe core/alloyed/shell type-II quantum dots”, Journal of Alloys and Compounds, Vol. 787, pp. 823-830, (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.02.139
[10]. M. F. Ehsan et al, “ZnTe/ZnSe heterostructures: In-situ synthesis, characterization and photocatalytic activity for Congo Red degradation”, SN Appl. Sci, Vol. 1, pp. 197, (2019). DOI: https://doi.org/10.1007/s42452-019-0220-2
[11]. T. A. Saleh, “Chapter 7 - Structural characterization of hybrid materials, Polymer Hybrid Materials and Nanocomposites”, William Andrew Publishing, pp. 213-240, (2021). DOI: https://doi.org/10.1016/B978-0-12-813294-4.00005-4
[12]. U. Hotje, C. Rose, M. Binnewies, “Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe”, Solid State Sciences, Vol. 5, pp. 1259-1262, (2003). DOI: https://doi.org/10.1016/S1293-2558(03)00177-8
[13]. R. Zarei et al., “An investigation on structural and optical properties of nanocolumnar ZnTe thin films grown by glancing angle technique”, Mater. Res. Express, Vol. 7, pp. 026419, (2020). DOI: https://doi.org/10.1088/2053-1591/ab7691
[14]. S. Adachi, “Cubic Zinc Sulphide (β-ZnS). In: Optical Constants of Crystalline and Amorphous Semiconductors”, Springer, Boston, MA. (1999), https://doi.org/10.1007/978-1-4615-5247-534. DOI: https://doi.org/10.1007/978-1-4615-5247-5_34
[15]. W. Szuszkiewicz et al., “Raman spectroscopy of MBE-grown ZnTe and Zn1-xMnxTe nanowires”, Journal of Physics: Conference Series, Vol. 92, pp. 012040, (2007). DOI: https://doi.org/10.1088/1742-6596/92/1/012040
[16]. F. A. Akgul et al., “Improved diode properties in zinc telluride thin film-silicon nanowire heterojunctions”, Philosophical Magazine, Vol. 95, pp. 1164-1183, (2015). DOI: https://doi.org/10.1080/14786435.2015.1026296
[17]. Guan et al., “Exciton-longitudinal optical phonon coupling in a ZnSe–Zn0.75Cd0.25Se double-superlattice at 1.4K”, Solid State Communications, Vol. 111, pp. 241-245, (1999). DOI: https://doi.org/10.1016/S0038-1098(99)00198-2
[18]. U. P. Gawai, U. P. Deshpande, B. N. Dole, “A study on the synthesis, longitudinal optical phonon- lasmon coupling and electronic structure of Al doped ZnS nanorods”, RSC Adv, Vol. 7, pp. 12382-12390, (2017). DOI: https://doi.org/10.1039/C6RA28180J
[19]. M. Slyotov, T. Mazur, V. Prokopiv, O. Slyotov, M. Mazur, “Sources of optical radiation based on ZnTe/ZnSe/ZnS heterostructures”, Materials Today: Proceedings, Vol. 62, pp. 5763–5766, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.03.476
[20]. J. Z. Niu et al., “Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals”, Dalton Trans, Vol. 39, pp. 3308-3314, (2010). DOI: https://doi.org/10.1039/b922130a
[21]. R. Zeng et al., “Aqueous synthesis of type-II CdTe/CdSe core–shell quantum dots for fluorescent probe labeling tumor cells”, Nanotechnology. 20, 095102, (2009). DOI: https://doi.org/10.1088/0957-4484/20/9/095102
[22]. K. Boldt et al., “Electronic Structure Engineering in ZnSe/CdS Type-II Nanoparticles by Interface Alloying”, J. Phys. Chem. C, Vol. 118, pp. 13276, (2014). DOI: https://doi.org/10.1021/jp503609f
[23]. L. W. Zhang et al., “Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: Mechanisms and kinetics”, Environmental Pollution, Vol. 164, pp. 259-266, (2012). DOI: https://doi.org/10.1016/j.envpol.2012.01.047
[24]. D. F. Fanga, Z. M. Zhang, Z. P. Wang, Z. J. Ding, “Study of Photoluminescence of CdS/ZnS Core/Shell Quantum Dots”, Physics Procedia, Vol. 32, pp. 920 – 925, ( 2012 ). DOI: https://doi.org/10.1016/j.phpro.2012.03.657
[25]. I. P. Seetoh, C. B. Soh, E. A. Fitzgerald, S. Chua, “Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence”, J. Appl. Phys. Lett, Vol. 102, pp. 101112, (2013). DOI: https://doi.org/10.1063/1.4795793
[26]. C. H. Wang et al., “Photoluminescence properties of CdTe∕CdSeCdTe∕CdSe core-shell type-II quantum dots”, J. Appl. Phys, Vol. 99, pp. 123521, (2006). DOI: https://doi.org/10.1063/1.2207721
[27]. Y. Sun, C. Qian et al., “Recombination processes in CuInS2/ZnS nanocrystals during steady-state photoluminescence”, Appl. Phys. Lett, Vol. 08, pp. 041106, (2016). DOI: https://doi.org/10.1063/1.4941028