Recent advances in synthesis of metal oxides as photoelectrochemical catalysts for photoelectrodes in water splitting process

93 views

Authors

  • Nguyen Hoang Tung Institute of Materials Science, Vietnam Academy of Science and Technology
  • Bui Thi Hoa Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Tien Thanh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Dao Son Lam Institute of Materials Science, Vietnam Academy of Science and Technology
  • Do Hung Manh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Nguyen Thanh Tung (Corresponding Author) Institute of Materials Science, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.54939/1859-1043.j.mst.96.2024.3-11

Keywords:

Photoelectrochemical; Catalysis; Water spliting; Metal oxides

Abstract

Amidst the global challenges of energy supply and the severe impacts of climate change, hydro energy is considered one of the most crucial options to replace fossil fuels and contribute to the goals of clean and sustainable energy development. The water-splitting reaction plays a vital role in hydro production by separating and collecting hydrogen gas from water. This necessitates the presence of highly efficient catalysts that can accelerate the reaction rate and ensure sustainability during operation. The key focus of catalyst research and development lies in optimizing performance and reducing the cost of hydro production. In this report, we present some advancements in the synthesis of photoelectrochemical catalyst materials for oxide-based water-splitting reactions.

References

[1]. M. M. I. Qureshy et al., Int. J. Hydrogen Energy, 44, 9237–9247, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2019.01.280

[2]. A. du Plessis, “Springer International Publishing, Cham, pp. 27–53, (2019).

[3]. M. Wang et al., Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model ®, USDOE Office of Energy Efficiency and Renewable Energy (EERE).

[4]. R. Perez et al., A Fundamental Look at Supply Side Energy Reserves for the Planet, (2015).

[5]. Statistical Review of World Energy, (2021).

[6]. D. Commandeur et al., ACS Appl. Nano Mater., 2, 1570–1578, (2019). DOI: https://doi.org/10.1021/acsanm.9b00047

[7]. M. Lamers et al., Chem. Mater., 30, 8630–8638, (2018). DOI: https://doi.org/10.1021/acs.chemmater.8b03859

[8]. Z. Ma et al., J. Phys. Chem. C, 122, 19281–19288, (2018). DOI: https://doi.org/10.1021/acs.jpcc.8b02828

[9]. J. Brillet et al., Nat. Photonics, 6, 824–828, (2012). DOI: https://doi.org/10.1038/nphoton.2012.265

[10]. W. H. Cheng et al., ACS Energy Lett., 3, 1795–1800, (2018). DOI: https://doi.org/10.1021/acsenergylett.8b00920

[11]. A. Chaves et al., npj 2D Mater. Appl., 4, 29, (2020).

[12]. Y. F. Tay et al., Water Joule, 2, 537–548, (2018). DOI: https://doi.org/10.1016/j.joule.2018.01.012

[13]. K. C. Kwon et al,. Energy Environ. Sci., 9, 2240–2248, (2016). DOI: https://doi.org/10.1039/C6EE00144K

[14]. B. Meena. et al., Sustain. Energy Technol. Assess., 49, 101775, (2022). DOI: https://doi.org/10.1016/j.seta.2021.101775

[15]. M. Kumar et al.,. Sustain. Energy Fuels, 6, 3961–3974, (2022). DOI: https://doi.org/10.1039/D2SE00600F

[16]. P. Subramanyam et al., Catal. Today, 379, 1–6, (2020). DOI: https://doi.org/10.1016/j.cattod.2020.01.041

[17]. D. Chen et al., ACS Sustain. Chem. Eng., 6, 12328–12336, (2018). DOI: https://doi.org/10.1021/acssuschemeng.8b02801

[18]. S. E. Jun et al., Small, 17, 1–10, (2021).

[19]. S. Wang et al., Angew. Chem. Int. Ed., 56, 8500–8504, (2017). DOI: https://doi.org/10.1002/anie.201703491

[20]. N. T. Tung et al., Environmental Research, 231, 115984, (2023). DOI: https://doi.org/10.1016/j.envres.2023.115984

[21]. B. Moss, O. Babacan, A. Kafizas and A. Hankin, Adv. Energy Mater., 11, 1–43, (2021). DOI: https://doi.org/10.1002/aenm.202003286

[22]. X. Sheng, T. Xu and X. Feng, Adv. Mater., 31, 1–29, (2019).

[23]. X. Sheng, T. Xu and X. Feng, Adv. Mater., 31, 1–29, (2019). DOI: https://doi.org/10.1002/adma.201805132

[24]. K.-H. Ye et al., Nano Energy, 18, 222–231, (2015). DOI: https://doi.org/10.1016/j.nanoen.2015.10.018

[25]. T. Ishibashi, M. Higashi, S. Ikeda and Y. Amao, ChemCatChem, 11, 6227–6235, (2019). DOI: https://doi.org/10.1002/cctc.201901563

[26]. C. J. Querebillo et al., Chem.–Eur. J., 25, 16048–16053, (2019). DOI: https://doi.org/10.1002/chem.201902963

[27]. A. Khan et al., Ceram. Int., 46, 19691–19700, (2020). DOI: https://doi.org/10.1016/j.ceramint.2020.04.047

[28]. Z. Peng et al., Int. J. Hydrogen Energy, 44, 2446–2453, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2018.12.064

[29]. K. Karmakar et al., ACS Appl. Nano Mater., 3, 1223–1231, (2020). DOI: https://doi.org/10.1021/acsanm.9b01972

[30]. W. Li et al., Chem. Eng. J., 379, 122256, (2020). DOI: https://doi.org/10.1016/j.cej.2019.122256

[31]. X. Liu, F. Zhan, D. Li and M. Xue, Int. J. Hydrogen Energy, 45, 28836–28846, (2020). DOI: https://doi.org/10.1016/j.ijhydene.2020.07.277

[32]. X. Fu et al., J. Mater. Chem. A, 2, 18383–18397, (2014). DOI: https://doi.org/10.1039/C4TA03464C

[33]. S. S. M. Bhat et al., Appl. Catal., B, 259, 118102, (2019).

[34]. H. Li et al., J. Am. Ceram. Soc., 103, 1187–1196, (2020). DOI: https://doi.org/10.1111/jace.16807

[35]. M. A. Tekalgne et al., J. Phys. Chem. C, 124, 647–652, (2020). DOI: https://doi.org/10.1021/acs.jpcc.9b09623

[36]. H. Bian et al., Part. Part. Syst. Charact., 35, 4–9, (2018). DOI: https://doi.org/10.1002/ppsc.201870013

[37]. S. N. Lou et al., J. Mater. Chem. A, 4, 6964–6971, (2016). DOI: https://doi.org/10.1039/C6TA00700G

[38]. F. Zhan et al., RSC Adv., 5, 69753–69760, (2015). DOI: https://doi.org/10.1039/C5RA11464K

[39]. M. K. Mohanta et al., ACS Appl. Energy Mater., 2, 7457–7466, (2019). DOI: https://doi.org/10.1021/acsaem.9b01450

[40]. F. K. Butt et al., New J. Chem., 39, 5197–5202, (2015). DOI: https://doi.org/10.1039/C5NJ00614G

[41]. C. S. Yaw et al., Chem. Eng. J., 364, 177–185, (2019). DOI: https://doi.org/10.1016/j.cej.2019.01.179

[42]. F. F. Abdi et al., J. Phys. Chem. Lett., 4, 2752–2757, (2013). DOI: https://doi.org/10.1021/jz4013257

[43]. Y. Ma et al., Carbon, 114, 591–600, (2017). DOI: https://doi.org/10.1016/j.carbon.2016.12.043

[44]. S. Y. Chae et al., RSC Adv., 4, 24032–24037, (2014). DOI: https://doi.org/10.1039/C4RA02868F

[45]. J. Li et al., ChemElectroChem, 5, 300–308, (2018). DOI: https://doi.org/10.1002/celc.201701056

[46]. M. Zhou et al., Chem. Eng. J., 370, 218–227, (2019). DOI: https://doi.org/10.1016/j.cej.2019.03.193

[47]. L. Yao et al., Appl. Catal., B, 268, 118460, (2020). DOI: https://doi.org/10.1016/j.apcatb.2019.118460

[48]. Y. Chen et al., Int. J. Hydrogen Energy, 45, 6174–6183, (2020). DOI: https://doi.org/10.1016/j.ijhydene.2019.12.170

[49]. A. R. C. Bredar et al., ACS Appl. Energy Mater., 3, 66–98, (2020). DOI: https://doi.org/10.1021/acsaem.9b01965

[50]. F. Trier et al., J. Phys. D: Appl. Phys., 51, 293002, (2018). DOI: https://doi.org/10.1088/1361-6463/aac9aa

[51]. M. S. Hammer et al., Nanotechnology, 19, 485701, (2008). DOI: https://doi.org/10.1088/0957-4484/19/48/485701

[52]. A. J. E. Rettie et al., J. Phys. Chem. Lett., 7, 471–479, (2016). DOI: https://doi.org/10.1021/acs.jpclett.5b02143

[53]. J.-W. Jang et al., Adv. Energy Mater., 7, 1701536, (2017).

[54]. M. Li et al., Sci. Rep., 9, 1–12, (2019).

[55]. A. Moysiadou and X. Hu, J. Mater. Chem. A, 7, 25865–25877, (2019). DOI: https://doi.org/10.1039/C9TA10308B

[56]. L. Li et al., Chem. Commun., 46, 7307, (2010). DOI: https://doi.org/10.1039/c0cc01828g

[57]. G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett., 10, 1088, (2010). DOI: https://doi.org/10.1021/nl100250z

[58]. Y.-C. Pu et al., Nano Lett., 13, 3817, (2013). DOI: https://doi.org/10.1021/nl4018385

[59]. G. Baffou, R. Quidant, Chem. Soc. Rev., 43, 3898, (2014). DOI: https://doi.org/10.1039/c3cs60364d

[60]. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang, Nano Lett., 13, 14, (2013). DOI: https://doi.org/10.1021/nl3029202

[61]. G. V Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater., 25, 3264, (2013). DOI: https://doi.org/10.1002/adma.201205076

[62]. M. Rycenga et al., Chem. Rev., 111, 3669, (2011). DOI: https://doi.org/10.1021/cr100275d

[63]. R. Kavitha, S. G. Kumar, Mater. Sci. Semicond. Process., 93, 59, (2019). DOI: https://doi.org/10.1016/j.mssp.2018.12.026

[64]. K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd., 727, 792, (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.08.142

[65]. P. Fageria, S. Gangopadhyay, S. Pande, RSC Adv., 4, 24962, (2014). DOI: https://doi.org/10.1039/C4RA03158J

[66]. S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science (80), 355, 1296, (2017). DOI: https://doi.org/10.1126/science.aal3573

[67]. S. Mubeen et al., ACS Nano, 8, 6066, (2014). DOI: https://doi.org/10.1021/nn501379r

[68]. Z. Zhang, J. T. Yates, Chem. Rev., 112, 5520, (2012). DOI: https://doi.org/10.1021/cr3000626

[69]. N. Güy, M. Özacar, Int. J. Hydrogen Energy, 41, 20100, (2016). DOI: https://doi.org/10.1016/j.ijhydene.2016.07.063

[70]. X. Zhang, Y. Liu, Z. Kang, ACS Appl. Mater. Interfaces, 6, 4480, (2014). DOI: https://doi.org/10.1021/am500234v

[71]. S. W. Kanget al., Mater. Today Commun., 21, 100675, (2019). DOI: https://doi.org/10.1016/j.mtcomm.2019.100675

[72]. C. Mahala, M. D. Sharma, M. Basu, ACS Appl. Nano Mater., 3, 1153, (2020). DOI: https://doi.org/10.1021/acsanm.9b01678

[73]. W. Zhang et al., Sol. Energy Mater. Sol. Cells, 180, 25, (2018).

[74]. Y. Liu et al., Sci. Rep., 6, 29907, (2016).

[75]. M. Wu et al., ACS Appl. Mater. Interfaces, 6, 15052, (2014). DOI: https://doi.org/10.1021/am503044f

[76]. H. M. Chen et al., Small, 9, 2926, (2013).

[77]. A. Sreedhar et al., J. Electroanal. Chem., 832, 426, (2019).

[78]. Y. Wei et al., Nanotechnology, 23, 235401, (2012). DOI: https://doi.org/10.1088/0957-4484/23/23/235401

[79]. J. Zhang, W. Wang, X. Liu, Mater. Lett., 110, 204, (2013). DOI: https://doi.org/10.1016/j.matlet.2013.07.113

[80]. H. Liu, Y. Hu, Z. Zhang, X. Liu, H. Jia, B. Xu, Appl. Surf. Sci., 355, 644, (2015). DOI: https://doi.org/10.1016/j.apsusc.2015.07.012

[81]. A. Fujishima, K. Honda, Nature, 238, 37, (1972). DOI: https://doi.org/10.1038/238037a0

[82]. X. Yang, X. Wu, J. Li, Y. Liu, RSC Adv., 9, 29097, (2019). DOI: https://doi.org/10.1039/C9RA05113A

[83]. A. S. Hainer et al., ACS Energy Lett., 3, 542, (2018). DOI: https://doi.org/10.1021/acsenergylett.8b00152

[84]. J. Abed et al., Nanomaterials, 10, 2260, (2020). DOI: https://doi.org/10.3390/nano10112260

[85]. H. Wang et al., J. Phys. Chem. C, 116, 6490, (2012). DOI: https://doi.org/10.1021/jp212303q

[86]. J. Zhang et al., ACS Nano, 10, 4496, (2016). DOI: https://doi.org/10.1021/acsnano.6b00263

[87]. S. Choi, Y. S. Nam, ACS Appl. Energy Mater., 1, acsaem.7b00262, (2018).

[88]. M.-I. Mendoza-Diaz et al., J. Phys. Chem. C, 124, 25421, (2020). DOI: https://doi.org/10.1021/acs.jpcc.0c08381

[89]. Z. Zhan et al., ACS Appl. Mater. Interfaces, 6, 1139, (2014). DOI: https://doi.org/10.1021/am404738a

[90]. R. Song, M. Liu, B. Luo, J. Geng, D. Jing, AIChE J., 66, 1–10, (2020). DOI: https://doi.org/10.1002/aic.17008

[91]. Y. Zhu et al., RSC Adv., 6, 56800, (2016). DOI: https://doi.org/10.1039/C6RA09647F

[92]. L. Sang, H. Ge, B. Sun, Int. J. Hydrogen Energy, 44, 15787, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2018.09.094

[93]. M. Mishra, D.-M. Chun, Appl. Catal. A Gen., 498, 126, (2015). DOI: https://doi.org/10.1016/j.apcata.2015.03.023

[94]. J. E. Turner et al., J. Electrochem. Soc., 131, 1777, (1984). DOI: https://doi.org/10.1149/1.2115959

[95]. B. M. Hunter, H. B. Gray, A. M. Müller, Chem. Rev., 116, 14120, (2016). DOI: https://doi.org/10.1021/acs.chemrev.6b00398

[96]. J. Deng, X. Lv, J. Zhong, J. Phys. Chem. C, 122, 29268, (2018). DOI: https://doi.org/10.1021/acs.jpcc.8b08826

[97]. K. G. Upul Wijayantha et al., Phys. Chem. Chem. Phys., 13, 5264, (2011). DOI: https://doi.org/10.1039/c0cp02408b

[98]. Y. Fu et al., Appl. Catal. B Environ., 260, 118206, (2020).

[99]. W. Xiong, Q. Zhao, X. Li, L. Wang, Part. Part. Syst. Charact., 33, 602, (2016). DOI: https://doi.org/10.1002/ppsc.201600085

[100]. L. Wang, H. Hu, N. T. Nguyen, Y. Zhang, P. Schmuki, Y. Bi, Nano Energy, 35, 171, (2017). DOI: https://doi.org/10.1016/j.nanoen.2017.03.035

[101]. E. Thimsen, F. Le Formal, M. Grätzel, S. C. Warren, Nano Lett., 11, 35, (2011). DOI: https://doi.org/10.1021/nl1022354

[102]. L. Wang, X. Zhou, N. T. Nguyen, P. Schmuki, ChemSusChem, 8, 618, (2015). DOI: https://doi.org/10.1002/cssc.201403013

[103]. P. S. Archana, N. Pachauri, Z. Shan, S. Pan, A. Gupta, J. Phys. Chem. C, 119, 15506, (2015). DOI: https://doi.org/10.1021/acs.jpcc.5b02357

[104]. J. Zheng et al., Energy Environ. Sci., 12, 2345, (2019). DOI: https://doi.org/10.1039/C9EE00524B

[105]. I. Thomann et al., Nano Lett., 11, 3440, (2011). DOI: https://doi.org/10.1021/nl201908s

[106]. X. Wang et al., Nano Lett., 14, 18, (2014). DOI: https://doi.org/10.1021/nl501302s

Published

25-06-2024

How to Cite

Nguyễn Hoàng Tùng, Bùi Thị Hoa, Nguyễn Tiến Thành, Đào Sơn Lâm, Đỗ Hùng Mạnh, and P. T. Nguyen Thanh. “Recent Advances in Synthesis of Metal Oxides As Photoelectrochemical Catalysts for Photoelectrodes in Water Splitting Process”. Journal of Military Science and Technology, vol. 96, no. 96, June 2024, pp. 3-11, doi:10.54939/1859-1043.j.mst.96.2024.3-11.

Issue

Section

Review

Categories

Most read articles by the same author(s)