Reduced graphene oxide aerogel for supercapacitor electrode
1135 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.89.2023.67-72Keywords:
Graphene aerogel; Supercapacitor; Capacity; Electrode.Abstract
In this study, the rGO aerogel material was successfully fabricated by freeze-drying combined with high-temperature reduction method. The characteristics of rGO aerogel were investigated by modern techniques such as SEM-EDX, XRD, Raman, N2 adsorption and desorption. Electrochemical properties were studied through cyclic potential scanning (CV), charge-discharge (GCD) and electrochemical Imdependance Spectroscopy (EIS) methods in 6M KOH electrolyte solution. Research results show that rGO aerogel has a large specific surface area and pore volume of 162.4 m2/g and 0.237 cm3/g, respectively, and a large specific capacitance of 90 F/g at a current density of 0.1. A/g and long charge-discharge life with specific capacitance reaching 87.5% after 500 charge-discharge cycles.
References
[1]. Liu, B., Q. Zhang, Z. Wang, et al., "Nitrogen and Sulfur-Codoped Porous Carbon Nanospheres with Hierarchical Micromesoporous Structures and an Ultralarge Pore Volume for High-Performance Supercapacitors". ACS Applied Materials & Interfaces. 12(7): p. 8225-8232, (2020). DOI: https://doi.org/10.1021/acsami.9b20473
[2]. Fan, W., C. Zhang, W.W. Tjiu, et al., "Graphene-Wrapped Polyaniline Hollow Spheres As Novel Hybrid Electrode Materials for Supercapacitor Applications". ACS Applied Materials & Interfaces. 5(8): p. 3382-3391, (2013). DOI: https://doi.org/10.1021/am4003827
[3]. Yang, X., Y. Li, P. Zhang, et al., "Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor". Carbon. 157: p. 70-79, (2020). DOI: https://doi.org/10.1016/j.carbon.2019.10.008
[4]. Bavio, M.A., G.G. Acosta, and T. Kessler, "Polyaniline and polyaniline-carbon black nanostructures as electrochemical capacitor electrode materials". International Journal of Hydrogen Energy. 39(16): p. 8582-8589, (2014). DOI: https://doi.org/10.1016/j.ijhydene.2014.01.018
[5]. Huang, G., Q. Geng, B. Xing, et al., "Manganous nitrate -assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes". Journal of Power Sources. 449: p. 227506, (2020). DOI: https://doi.org/10.1016/j.jpowsour.2019.227506
[6]. Zang, P., S. Gao, L. Dang, et al., "Green synthesis of holey graphene sheets and their assembly into aerogel with improved ion transport property". Electrochimica Acta. 212: p. 171-178, (2016). DOI: https://doi.org/10.1016/j.electacta.2016.06.146
[7]. Sethi, M., H. Bantawal, U.S. Shenoy, et al., "Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material". Journal of Alloys and Compounds. 799: p. 256-266, (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.05.302
[8]. Simon, P. and Y. Gogotsi, "Materials for electrochemical capacitors". Nature Materials. 7(11): p. 845-854, (2008). DOI: https://doi.org/10.1038/nmat2297
[9]. Wu, X., J. Zhou, W. Xing, et al., "High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio". Journal of Materials Chemistry. 22(43): p. 23186-23193, (2012). DOI: https://doi.org/10.1039/c2jm35278h
[10]. Lee, S.P., G.A.M. Ali, H. Algarni, et al., "Flake size-dependent adsorption of graphene oxide aerogel". Journal of Molecular Liquids. 277: p. 175-180, (2019). DOI: https://doi.org/10.1016/j.molliq.2018.12.097
[11]. Zhao, G., C. Chen, D. Yu, et al., "One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors". Nano Energy. 47: p. 547-555, (2018). DOI: https://doi.org/10.1016/j.nanoen.2018.03.016
[12]. Wei, G., J. Yu, M. Gu, et al., "Dielectric relaxation and hopping conduction in reduced graphite oxide". Journal of Applied Physics. 119: p. 224102, (2016). DOI: https://doi.org/10.1063/1.4953357
[13]. Chaunchaiyakul, S., T. Yano, K. Khoklang, et al., "Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy". Carbon. 99: p. 642-648, (2016). DOI: https://doi.org/10.1016/j.carbon.2015.12.090
[14]. Thommes, M., K. Kaneko, A.V. Neimark, et al., "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)". 87(9-10): p. 1051-1069, (2015). DOI: https://doi.org/10.1515/pac-2014-1117