Research on fabrication technology of PVV-5AVN explosive for explosive reactive armor

121 views

Authors

  • Pham Kim Dao Institute of Propellant and Explosives
  • Pham Van Toai Institute of Propellant and Explosives
  • Pham Quang Hieu Institute of Propellant and Explosives
  • Bui Anh Thuc (Corresponding Author) Institute of Chemistry and Materials, Academy of Military Science and Technology
  • Tran Van Phuong Institute of Propellant and Explosives

DOI:

https://doi.org/10.54939/1859-1043.j.mst.IPE.2024.138-144

Keywords:

PVV-5AVN explosive; Explosive reactive armor; Polyisobutylene; PBX; RDX.

Abstract

PVV-5AVN explosive is a type of polymer-bonded explosive (PBX that typically comprises a mixture of RDX (hexogen), a high-explosive compound, and a polymer binder such as polyisobutylene. It finds extensive application in various generations of explosive reactive armor. This study investigates factors influencing the quality and specifications of PVV-5AVN explosives, including solvent choice, solvent ratio, mixing time, and ingredient proportions. Specifically, the RDX content is 85 ÷ 91%, and the binder system content is 9 ÷ 15% (with a DOS/PIB mass ratio of 2.75). These findings establish a fabricating process for laboratory-scale PVV-5AVN explosives that meets technical standards comparable to existing literature.

References

[1]. Григорян, В. А., Дорохов, Н. С., Кобылкин, И. Ф., & Рототаев, Д. А. “Проникание кумулятивных струй через взрывную динамическую защиту,” Оборонная техника, № 11, cт. 35-45, (2002).

[2]. Патент № 2064650, “Устройство для защиты преграды от снарядов”, (1993).

[3]. Патент № 003979, “Устройство реактивной брони”, (2000).

[4]. Григорян В.А., Дорохов Н.С. и др. “Разрушение удлиненного ударника при пробитии преграды с промежуточным эластомерным слоем,” Доклады Академии наук, № 4, cт.392, (2003).

[5]. Григорян В.А., Дорохов Н.С. и др. “Частные вопросы конечной баллистики” М., МГТУ им Н.Э.Баумана, (2006).

[6]. Григорян, В. А., Дорохов, Н. С., Кобылкин, И. Ф., & Рототаев, Д. А.. “Проникание кумулятивных струй через взрывную динамическую защиту,” Оборонная техника, № 11, cт. 35-45, (2002).

[7]. Кобылкин, И. Ф., & Дорохов, Н. С. “Взаимодействие кумулятивной струи с движущимися пластинами динамической защиты,” Физика горения и взрыва, T.49, № 4, cт. 125-130, (2013).

[8]. Talawar, M. B., Jangid, S. K., Nath, T., Sinha, R. K., & Asthana, S. N. “New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends,” Journal of hazardous materials, No. 300, pp. 307-321, (2015).

[9]. Hao, F., You, Y., Chen, J., Zhang, J., Feng, X., Xu, P & Li, L. “Influence of Modified Energetic Materials on the Protective Effect of Reactive Armor,” Journal of Physics: Conference Series, Vol. 1855, No. 1, pp. 012028, (2021).

[10]. Пиросправка. Издание 6. Москва, ст 193, (2012).

[11]. TCVN/QS 1837: 2017 Explosives - Determination of impact sensitivity by Cast hammer method.

[12]. TCVN 6422 : 1998 Industrial explosive matter - Determination of explosive velocity.

[13]. TCVN 6421 : 1998 Industrial explosive matter - Upsetting test according to hess.

[14]. TCVN 6424 : 1998 Industrial explosive matter – Ballistic mortar test.

[15]. TCVN/QS 2146: 2022 C4-VN explosives.

Downloads

Published

14-10-2024

How to Cite

Pham Kim Dao, Pham Van Toai, Pham Quang Hieu, Bui Anh Thuc, and Tran Van Phuong. “Research on Fabrication Technology of PVV-5AVN Explosive for Explosive Reactive Armor”. Journal of Military Science and Technology, no. IPE, Oct. 2024, pp. 138-44, doi:10.54939/1859-1043.j.mst.IPE.2024.138-144.

Issue

Section

Research Articles

Categories