A novel methodology design for matching network based on SIW technology for microwave power amplifiers
12 viewsDOI:
https://doi.org/10.54939/1859-1043.j.mst.FEE.2024.106-112Keywords:
Filter matching network; Substrate integrated Waveguide-SIW; Complementary Split Ring Resonators-CSRR.Abstract
This paper presents a novel method for creating a matching network (MN) with filtering functionalities on substrate intergrated waveguide (SIW) using Complementary Split Ring Resonators (CSRR). It defines principles for modifying the MN impedance through adjustments to the parameters of the CSRR and SIW transmission line. Additionally, it demonstrates the practical implementation of this approach by designing an output MN for a high-frequency power amplifier operating at 6 GHz. The MN is configured with dimensions of 13.6 x 5.4 mm and exhibits an insertion loss of 1.26 dB.
References
[1]. J. Bahl, “Fundamentals of RF and Microwave Transistor Amplifiers”. Hoboken, NJ, USA: Wiley, (2009). DOI: https://doi.org/10.1002/9780470462348
[2]. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications”. New York, NY, USA: Wiley, (2001). DOI: https://doi.org/10.1002/0471221619
[3]. L. Gao, X. Y. Zhang, S. Chen, and Q. Xue, “Compact power amplifier with bandpass response and high efficiency,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 707–709, (2014), doi: 10.1109/ LMWC.2014.2340791. DOI: https://doi.org/10.1109/LMWC.2014.2340791
[4]. Y. Gao, J. Powell, X. Shang, and M. J. Lancaster, “Coupling matrix based design of waveguide filter amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5300–5309, (2018), doi: 10.1109/ TMTT.2018.2871122. DOI: https://doi.org/10.1109/TMTT.2018.2871122
[5]. Y. Gao, X. Shang, C. Guo, J. Powell, Y. Wang, and M. J. Lancaster, “Integrated waveguide filter amplifier using the coupling matrix technique,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 4, pp. 267–269, (2019), doi: 10.1109/LMWC.2019.2901892. DOI: https://doi.org/10.1109/LMWC.2019.2901892
[6]. M. Furqan, F. You, W. Shi, S. Ahmad, and T. Qi, “A broadband power amplifier using hairpin bandpass filter matching network,” Electron. Lett., vol. 56, no. 4, pp. 168–213, (2019), doi: 10.1049/ el.2019.3047.
[7]. J. A. Estrada, J. R. Montejo-Garai, P. de Paco, D. Psychogiou, and Z. Popovic´, “Power amplifiers with frequency-selective matching networks,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 697–708, (2021), doi: 10.1109/TMTT.2020.3020097. DOI: https://doi.org/10.1109/TMTT.2020.3020097
[8]. J. Jeong, P. Kim, P. Pech, Y. Jeong and S. Lee, "Substrate-Integrated Waveguide Impedance Matching Network with Bandpass Filtering," 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, (2019), pp. 1-3, doi: 10.1109/RWS.2019.8714427. DOI: https://doi.org/10.1109/RWS.2019.8714427
[9]. M. Abdolhamidi and M. Shahabadi, "X-Band Substrate Integrated Waveguide Amplifier," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 815-817, (2008), doi: 10.1109/LMWC.2008.2007711. DOI: https://doi.org/10.1109/LMWC.2008.2007711
[10]. P. Pech, P. Kim and Y. Jeong, "Microwave Amplifier With Substrate Integrated Waveguide Bandpass Filter Matching Network," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 4, pp. 401-404, (2021), doi: 10.1109/LMWC.2021.3059859. DOI: https://doi.org/10.1109/LMWC.2021.3059859
[11]. Z. Wang and C. -W. Park, "Novel substrate integrated waveguide (SIW) type high power amplifier using microstrip-to-SIW transition," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Korea (South), (2013), pp. 101-103, doi: 10.1109/APMC.2013.6695204. DOI: https://doi.org/10.1109/APMC.2013.6695204
[12]. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968) DOI: https://doi.org/10.1070/PU1968v010n04ABEH003699
[13]. Zhang X-C, Yu Z-Y, Xu J. “Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)”. Progress In Electromagnetics Research;72:39-46, (2007). DOI: 10.2528/pier07030201. DOI: https://doi.org/10.2528/PIER07030201
[14]. Baena, J. D., J. Bonache, F. Martin, et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, (2005).
[15]. Baena, J. D., J. Bonache, F. Martin, et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, (2005). DOI: https://doi.org/10.1109/TMTT.2005.845211