Phương pháp xây dựng các lược đồ mã khối khóa công khai dựa trên bài toán logarit rời rạc
154 lượt xemDOI:
https://doi.org/10.54939/1859-1043.j.mst.CSCE7.2023.15-26Từ khóa:
Mật mã khóa đối xứng; Mật mã khóa công khai; Lược đồm mã hóa – xác thực; Bài toán logarit rời rạc; Mật mã OTP.Tóm tắt
Bài báo đề xuất phương pháp xây dựng sơ đồ mã khối cho phép xác minh nguồn gốc và tính toàn vẹn của thông điệp được mã hóa. Ngoài ra, khóa bí mật dùng chung giữa người gửi/người mã hóa và người nhận/người giải mã đối với mỗi tin nhắn được mã hóa được thiết lập dựa trên cơ chế mật mã khóa công khai.
Tài liệu tham khảo
[1]. Lưu Hồng Dũng, Nguyễn Ánh Việt. "Một giải pháp xây dựng hệ mật khóa đối xứng". Tạp chí An toàn Thông tin, ISSN 1859 - 1256, Số 5 (057), (2020).
[2]. Lưu Hồng Dũng, Nguyễn Ánh Việt, Đoàn Thị Bích Ngọc. "Thuật toán mã hóa - xác thực thông tin phát triển từ mật mã otp". Journal of Military Science and Technology, CSCE special issue, 87-93, (2020). DOI: https://doi.org/10.54939/1859-1043.j.mst...87-93
[3]. Luu Hong Dung, Tong Minh Duc, Bui The Truyen. "A variant of otp cipher with symmetric key solution". Journal of Science and Technique - Section on Information and Communication Technology (ICT) - No. 16, (2020). DOI: 10.56651/lqdtu.jst.v9.n02.210.ict. DOI: https://doi.org/10.56651/lqdtu.jst.v9.n02.210.ict
[4]. Gilbert Vernam . US Patent 1,310,719. (1919). DOI: https://doi.org/10.1136/bmj.1.3037.310
[5]. National Institute of Standards and Technology, NIST FIPS PUB 186-4. Digital Signature Standard, U.S. Department of Commerce, (2013).
[6]. GOST R 34.10-94. Russian Federation Standard. Information Technology. Cryptographic Data security. "Produce and check procedures of Electronic Digital Signature based on Asymmetric Cryptographic Algorithm". Government Committee of the Russia for Standards, (1994) (in Russian).
[7]. J. KATZ, Y. LINDELL. "Introduction to Modern Cryptography". Chapman & Hall/CRC, (2008). DOI: https://doi.org/10.1201/9781420010756
[8]. Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman. "An Introduction to Mathematical Cryptography". ISBN 978-0-387-77993-5. Springer - Verlag, (2008).
[9]. L.C. WASHINGTON. "Elliptic Curves. Number Theory and Cryptography". Chapman & Hall/CRC, (2008).
[10]. D.R. STINSON. "Cryptography. Theory and Practice". Chapman & Hall/CRC, (2006). DOI: https://doi.org/10.1201/9781420057133
[11]. R.A. MOLLIN. "An Introduction to Cryptography". Chapman & Hall/CRC, (2006). DOI: https://doi.org/10.1201/9781420011241
[12]. J. Talbot and D. Welsh. "Complexity and Cryptography: An Introduction". Cambridge University Press, (2006). DOI: https://doi.org/10.1017/CBO9780511755286
[13]. J. H. Silverman. "Elliptic curves and cryptography". In Public-Key Cryptography, volume 62 of Proc. Sympos. Appl. Math., pages 91–112. Amer. Math. Soc., Providence, RI, (2005). DOI: https://doi.org/10.1090/psapm/062/2211873
[14]. J. BUCHMANN. "Introduction to Cryptography". Springer–Verlag, (2004). DOI: https://doi.org/10.1007/978-1-4419-9003-7
[15]. W. MAO. "Modern Cryptography. Theory and Practice". Pearson Education, (2004).
[16]. I. SHPARLINSKI. "Cryptographic Applications of Analytic Number Theory. Complexity Lower Bounds and Pseurandomness". Birkhäuser, (2003). DOI: https://doi.org/10.1007/978-3-0348-8037-4
[17]. S.S. WAGSTAFF. "Cryptanalysis of Number Theoretic Ciphers". Chapman & Hall/CRC, (2003).
[18]. I. F. Blake, G. Seroussi, and N. P. Smart. "Elliptic Curves in Cryptography", volume 265 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, (2000).
[19]. I. BLAKE, G.SEROUSSI & N. SMART. "Elliptic Curves in Cryptography". Cambridge University Press, (2000). DOI: https://doi.org/10.1017/CBO9781107360211
[20]. A. Menezes. "Elliptic Curve Public Key Cryptosystems". The Kluwer International Series in Engineering and Computer Science, 234. Kluwer Academic Publishers, Boston, (1993). DOI: https://doi.org/10.1007/978-1-4615-3198-2